Ричард Фейнман - Том 1. Механика, излучение и теплота
- Название:Том 1. Механика, излучение и теплота
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - Том 1. Механика, излучение и теплота краткое содержание
Том 1. Механика, излучение и теплота - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
а
то
Но нам нужна не сама величина Δ s , а отношение Δ s /Δ t . После деления на Δ t получим выражение
которое после устремления Δ t к нулю превратится в
В этом состоит процесс взятия производной, или дифференцирования функций. На самом деле он несколько легче, чем это кажется на первый взгляд. Заметьте, что если в разложениях, подобных предыдущим, встречаются члены, пропорциональные (Δ t ) 2или (Δ t ) 3или еще более высоким степеням, то их можно сразу вычеркнуть, поскольку они все равно обратятся в нуль, когда в конце мы будем Δ t устремлять к нулю. После небольшой тренировки вы сразу будете видеть, что нужно оставлять, а что сразу отбрасывать. Существует много правил и формул для дифференцирования различных видов функций. Их можно либо запомнить, либо пользоваться специальными таблицами. Небольшой список таких правил приводится в табл. 8.3.
Таблица 8.3 НЕКОТОРЫЕ ПРОИЗВОДНЫЕ
s, u, v, w — произвольные функции ;
a, b, с, n — произвольные постоянные .
§ 4. Расстояние как интеграл
Обсудим теперь обратную проблему. Пусть вместо таблицы расстояний нам дана таблица скоростей в различные моменты времени, начиная с нуля. В табл. 8.4 представлена зависимость скорости падающего шара от времени. Аналогичную таблицу можно составить и для машины, если записывать показания спидометра через каждую минуту или полминуты. Но можно ли, зная скорость машины в любой момент времени, вычислить расстояние, которое ею было пройдено?
Таблица 8.4 СКОРОСТЬ ПАДАЮЩЕГО ШАРА
Эта задача обратна той, которую мы только что рассмотрели. Как же решить ее, если скорость машины непостоянна, если она то ускоряется до 90 км / час , то замедляется, затем где-то останавливается у светофора и т.д.? Сделать это нетрудно. Нужно использовать ту же идею и выражать полное расстояние через бесконечно малые его части. Пусть в первую секунду скорость будет v 1, тогда по формуле Δs=v 1Δt можно вычислить расстояние, пройденное за эту секунду. В следующую секунду скорость будет несколько другой, хотя, может быть, и близкой к первоначальной, а расстояние, пройденное машиной за вторую секунду, будет равно новой скорости, умноженной на интервал времени (1 сек ). Этот процесс можно продолжить дальше, до самого конца пути. В результате мы получим много маленьких отрезков, которые в сумме дадут весь путь. Таким образом, путь является суммой скоростей, умноженных на отдельные интервалы времени, или s=∑vΔt, где греческая буква ∑(сигма) означает суммирование. Точнее, это будет сумма скоростей в некоторые моменты времени, скажем t i , умноженные на Δt:
(8.6)
причем каждый последующий момент t i +1находится по правилу t i+1=t i+Δt. Но расстояние, полученное этим методом, не будет точным, поскольку скорость за время Δt все же изменяется. Выход из этого положения заключается в том, чтобы брать все меньшие и меньшие интервалы Δt, т. е. разбивать время движения на все большее число все меньших отрезков. В конце концов мы придем к следующему, теперь уже точному выражению для пройденного пути:
(8.7)
Математики придумали для этого предела, как и для дифференциала, специальный символ. Значок Δ превращается в d , напоминая о том, что интервал времени сколь угодно мал, а знак суммирования превращается в ∫ — искаженное большое S , первая буква латинского слова «Summa». Этот значок назван интегралом. Таким образом, мы пишем
(8.8)
где v ( t ) — скорость в момент t . Сама же операция суммирования этих членов называется интегрированием. Она противоположна операции дифференцирования в том смысле, что производная этого интеграла равна v ( t ), так что один оператор ( d / dt ) «уничтожает» другой (∫). Это дает возможность получать формулы для интегралов путем обращения формул для дифференциалов: интеграл от функции, стоящей в правой колонке табл.8.3, будет равен функции, стоящей в левой колонке. Дифференцируя все виды функций, вы сами можете составить таблицу интегралов.
Любая функция, заданная в аналитическом виде, т. е. выражающаяся через комбинацию известных нам функций, дифференцируется очень просто — вся операция выполняется чисто алгебраически, и в результате мы всегда получаем какую-то известную функцию. Однако интеграл не от всякой функции можно записать в аналитическом виде. Разумеется, для каждого частного интеграла всегда сначала пытаются найти такую функцию, которая, будучи продифференцирована, давала бы функцию, стоящую после знака интеграла (она называется подынтегральной). Однако это не всегда удается сделать. В таких случаях интеграл вычисляют просто суммированием, т. е. вычисляют суммы типа (8.6) со все меньшими и меньшими интервалами, пока не получат результат с достаточной точностью.
§ 5. Ускорение
Следующий шаг на пути к уравнениям движения — это введение величины, которая связана с изменением скорости движения. Естественно спросить: а как изменяется скорость движения? В предыдущих главах мы рассматривали случай, когда действующая сила приводила к изменению скорости. Бывают легковые машины, которые набирают с места за 10 сек скорость 90 км / час . Зная это, мы можем определить, как изменяется скорость, но только в среднем. Займемся следующим более сложным вопросом: как узнать быстроту изменения скорости. Другими словами, на сколько метров в секунду изменяется скорость за 1 сек . Мы уже установили, что скорость падающего тела изменяется со временем по формуле v =9,8 t (см. табл. 8.4), а теперь хотим выяснить, насколько она изменяется за 1 сек . Эта величина называется ускорением.
Читать дальшеИнтервал:
Закладка: