Ричард Фейнман - Том 2. Электромагнетизм и материя

Тут можно читать онлайн Ричард Фейнман - Том 2. Электромагнетизм и материя - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 2. Электромагнетизм и материя
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 2. Электромагнетизм и материя краткое содержание

Том 2. Электромагнетизм и материя - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить : гл. 12 (вып. 1) «Характеристики силы»

Том 2. Электромагнетизм и материя - читать онлайн бесплатно полную версию (весь текст целиком)

Том 2. Электромагнетизм и материя - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вы можете тоже сказать: «Профессор, дайте мне, пожалуйста, приближенное описание электромагнитных волн, пусть даже слегка неточное, но такое, чтобы я смог увидеть их так, как я могу увидеть почти невидимых ангелов. И я видоизменю эту картину до нужной абстракции».

Увы, я не могу этого сделать для вас. Я просто не знаю как. У меня нет картины этого электромагнитного поля, которая была бы хоть в какой-то степени точной. Я узнал об электромагнитном поле давным-давно, 25 лет тому назад, когда я был на вашем месте, и у меня на 25 лет больше опыта размышлений об этих колеблющихся волнах. Когда я начинаю описывать магнитное поле, движущееся через пространство, то говорю о полях Еи В, делаю руками волнистые движения и вы можете подумать, что я способен их видеть. А на самом деле, что я при этом вижу? Вижу какие-то смутные, туманные, волнистые линии, на них там и сям надписано Еи В, а у других линий имеются словно какие-то стрелки, то здесь, то там на них есть стрелки, которые исчезают, едва в них вглядишься. Когда я рассказываю о полях, проносящихся сквозь пространство, в моей голове катастрофически перепутываются символы, нужные для описания объектов, и сами объекты. Я не в состоянии дать картину, хотя бы приблизительно похожую на настоящие волны. Так что, если вы сталкиваетесь с такими же затруднениями при попытках представить поле, не терзайтесь, дело обычное.

Наша наука предъявляет воображению немыслимые требования. Степень воображения, которая теперь требуется в науке, несравненно превосходит то, что требовалось для некоторых прежних идей. Нынешние идеи намного труднее вообразить себе. Правда, мы используем для этого множество средств. В ход пускаются математические уравнения и правила, рисуются различные картинки. Вот сейчас я ясно осознаю, что всегда, когда я завожу речь об электромагнитном поле в пространстве, фактически перед моим взором встает своего рода суперпозиция всех тех диаграмм на эту тему, которые я когда-либо видывал. Я не воображаю себе маленьких пучков линий поля, снующих туда и сюда; они не нравятся мне потому, что если бы я двигался с иной скоростью, то они бы исчезли. Я не всегда вижу и электрические, и магнитные поля, потому что временами мне кажется, что гораздо правильнее была бы картина, включающая векторный и скалярный потенциалы, ибо последние, пожалуй, имеют больший физический смысл, чем колебания полей.

Быть может, вы считаете, что остается единственная надежда на математическую точку зрения. Но что такое математическая точка зрения? С математической точки зрения в каждом месте пространства существует вектор электрического поля и вектор магнитного поля, т. е. с каждой точкой связаны шесть чисел. Способны ли вы вообразить шесть чисел, связанных с каждой точкой пространства? Это слишком трудно. А можете вы вообразить хотя бы одно число, связанное с каждой точкой пространства? Я лично не могу! Я способен себе представить такую вещь, как температура в каждой точке пространства. Но это, по-видимому, вообще вещь представимая: имеется теплота и холод, меняющиеся от места к месту. Но, честное слово, я не способен представить себе число в каждой точке.

Может быть, поэтому стоит поставить вопрос так: нельзя ли представить электрическое поле в виде чего-то сходного с температурой, скажем, похожего на смещения куска студня? Сначала вообразим себе, что мир наполнен тонкой студенистой массой, а поля представляют собой какие-то искривления (скажем, растяжения или повороты) этой массы. Вот тогда можно было бы себе мысленно вообразить поле. А после того, как мы «увидели», на что оно похоже, мы можем отвлечься от студня. Именно это многие и пытались делать довольно долгое время. Максвелл, Ампер, Фарадей и другие пробовали таким способом понять электромагнетизм. (Порой они называли абстрактный студень «эфиром».) Но оказалось, что попытки вообразить электромагнитное поле подобным образом на самом деле препятствуют прогрессу. К сожалению, наши способности к абстракциям, к применению приборов для обнаружения поля, к использованию математических символов для его описания и т. д. ограниченны. Однако поля в известном смысле — вещь вполне реальная, ибо, закончив возню с математическими уравнениями (все равно, с иллюстрациями или без, с чертежами или без них, пытаясь представить поле въяве или не делая таких попыток), мы все же можем создать приборы, которые поймают сигналы с космической ракеты или обнаружат в миллиарде световых лет от нас галактику, и тому подобное.

Вопрос о воображении в науке наталкивается зачастую на непонимание у людей других специальностей. Они принимаются испытывать наше воображение следующим способом. Они говорят: «Вот перед вами изображены несколько людей в некоторой ситуации. Как вы представляете, что с ними сейчас случится?» Если вы ответите: «Не могу себе представить», они могут счесть вас за человека со слабым воображением. Они проглядят при этом тот факт, что все, что допускается воображать в науке, должно согласовываться со всем прочим, что нам известно : что электрические поля и волны, о которых мы говорим, это не просто удачные мысли, которые мы вызываем в себе, если нам этого хочется, а идеи, которые обязаны согласовываться со всеми известными законами физики. Недопустимо всерьез воображать себе то, что очевидным образом противоречит известным законам природы. Так что наш род воображения — весьма трудная игра. Надо иметь достаточно воображения, чтобы думать о чем-то никогда прежде не виденном, никогда прежде не слышанном. В то же время приходится, так сказать, надевать на мысли смирительную рубашку, ограничивать их условиями, вытекающими из наших знаний о том, какому пути на самом деле следует природа. Проблема создания чего-то, что является совершенно новым и в то же время согласуется со всем, что мы видели раньше,— проблема чрезвычайно трудная.

Но раз уж зашла об этом речь, я хочу остановиться на том, в состоянии ли мы себе представить красоту , которую мы не можем видеть . Это интересный вопрос. Когда мы глядим на радугу, она нам кажется прекрасной. Каждый, увидав ее, воскликнет: «О радуга!». (Смотрите, как научно я подхожу к вопросу. Я остерегаюсь именовать что-то восхитительным, пока нет экспериментального способа определить это.) Ну, а как мы описывали бы радугу, если бы были слепыми? А ведь мы слепы , когда измеряем коэффициент отражения инфракрасных лучей от хлористого натрия или когда говорим о частоте волн, пришедших от некоторой невидимой глазу галактики. Тогда мы чертим график, рисуем диаграмму. К примеру, для радуги подобным графиком была бы зависимость интенсивности излучения от длины волны, измеренная спектрофотометром под всевозможными углами к горизонту. Вообще говоря, подобные измерения должны были бы приводить к довольно пологим кривым. И вот в один прекрасный день кто-то обнаружил бы, что при какой-то определенной погоде, под некоторыми углами к горизонту спектр интенсивности как функция длины волны начал себя вести странно — у него появился пик. Если бы угол наклона прибора чуть-чуть изменился, максимум пика перешел бы от одной длины волны к другой. И вот через некоторое время в физическом журнале для слепых появилась бы техническая статья под названием «Интенсивность излучения как функция угла при некоторых метеоусловиях». В этой статье был бы график типа, показанного на фиг. 20.5. «Автор заметил,— говорилось бы, быть может, в статье,— что под большими углами основная часть радиации приходится на длинные волны, а под меньшими максимум излучения смещается к коротким волнам». (Ну, а мы бы сказали, что под углом 40° свет преимущественно зеленый, а под углом 42° — красный.)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 2. Электромагнетизм и материя отзывы


Отзывы читателей о книге Том 2. Электромагнетизм и материя, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x