Ричард Фейнман - Том 2. Электромагнетизм и материя

Тут можно читать онлайн Ричард Фейнман - Том 2. Электромагнетизм и материя - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 2. Электромагнетизм и материя
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 2. Электромагнетизм и материя краткое содержание

Том 2. Электромагнетизм и материя - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить : гл. 12 (вып. 1) «Характеристики силы»

Том 2. Электромагнетизм и материя - читать онлайн бесплатно полную версию (весь текст целиком)

Том 2. Электромагнетизм и материя - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если мы захотим повысить частоту резонатора на фиг. 23.16,в сильнее, то надо еще уменьшить индуктивность L. Чтобы этого добиться, следует уменьшить геометрические размеры индуктивной секции, скажем, уменьшить на чертеже высоту h . При уменьшении h резонансная частота растет. И в конце концов можно, конечно, дойти до такого положения, при котором высота h сравняется с промежутком между обкладками. Получится обычная цилиндрическая банка; наш резонансный контур превратится в полый резонатор, показанный на фиг. 23.7.

Заметьте теперь, что в первоначальном резонансном LС -контуре (фиг. 23.16) электрические и магнитные поля были совершенно разделены. Когда мы постепенно видоизменяли резонансную систему, все повышая ее частоту, то магнитное поле теснее и теснее сближалось с электрическим, пока в полом резонаторе окончательно не перемешалось с ним.

Хотя все полые резонаторы, о которых в этой главе говорилось, были цилиндрическими, ничего волшебного в самой цилиндрической форме нет. Банка любого вида все равно будет обладать резонансными частотами, отвечающими различным допустимым типам колебаний электрических и магнитных полей. К примеру, у «полости» на фиг. 23.17 будет своя личная совокупность резонансных частот, хотя их и трудно рассчитать.

Фиг 2317 Еще одна резонансная полость Глава 24 ВОЛНОВОДЫ 1 - фото 1367

Фиг, 23.17. Еще одна резонансная полость .

Глава 24 ВОЛНОВОДЫ

§ 1. Передающая линия

В предыдущей главе мы выяснили, что случится с сосредоточенными элементами цепи, если на них подать очень высокую частоту. Мы пришли к выводу, что резонансный контур можно заменить полостью, внутри которой поля вступают друг с другом в резонанс. Но есть и другой интересный технический вопрос: как связать между собой два предмета, чтобы можно было передать электрическую энергию от одного к другому? В цепях низкой частоты эта связь осуществляется по проводам, но этот способ на высоких частотах не очень хорош, потому что энергия рассеивается во все стороны и трудно контролировать, куда она потечет. От проводов во все стороны разбегаются поля; к тому же токи и напряжения высокой частоты не очень хорошо «проводятся» проводами. В этой главе мы и хотим разобраться в том, как можно соединять между собой предметы на большой частоте. Таков по крайней мере один подход к теме нашей лекции.

Но можно к ней подойти и по-другому, можно сказать, что мы пока обсуждали поведение волн в пустом пространстве, а теперь пришло время посмотреть, что случится, если колеблющиеся поля ограничить в одном или двух измерениях. Мы обнаружим новое интересное явление: если поля ограничить в двух измерениях и дать им свободу в третьем, они распространяются в виде волн. «Волны в волноводе» и будут предметом нашей лекции.

Начнем с разработки общей теории линии передачи. Обычная линия электропередачи, которая тянется от мачты к мачте по полям и лесам, тратит часть своей мощности на излучение, но частота здесь так мала (50—60 гц), что эти потери почти незаметны. От излучения можно избавиться, поместив провод в металлическую трубу, но это непрактично, потому что при таких токах и напряжениях в сети без больших, тяжелых и дорогих труб не обойтись. Так что в ходу обычно «открытые линии».

На частотах чуть повыше (порядка нескольких килогерц) излучение уже вполне заметно. Но его можно уменьшить, пользуясь «двухжильной» линией передачи, как это делается при телефонной связи на малые расстояния. Однако при дальнейшем повышении частоты излучение вскоре становится нетерпимо сильным либо за счет потерь энергии, либо из-за того, что энергия перетекает в другие контуры, где она совсем не нужна. На частоте от нескольких килогерц до нескольких тысяч мегагерц электромагнитные сигналы и электромагнитная энергия обычно передаются по коаксиальным линиям, т. е. по проводу, помещенному внутрь цилиндрического «внешнего проводника», или «защиты». Хотя дальнейшие рассуждения годятся для линии передачи из двух параллельных проводников любого сечения, речь будет идти о коаксиальном кабеле.

Возьмем простейшую коаксиальную линию, состоящую из центрального проводника (пусть это будет тонкостенный полый цилиндр) и внешнего проводника — тоже тонкостенного цилиндра, ось которого совпадает с осью внутреннего проводника (фиг. 24.1).

Фиг 241 Коаксиальная передающая линия Для начала представим себе как - фото 1368

Фиг. 24.1. Коаксиальная передающая линия.

Для начала представим себе, как примерно ведет себя эта линия при относительно низких частотах. Мы уже кое-что говорили о поведении при низких частотах, когда утверждали, что у двух таких проводников на каждую единицу длины приходится сколько-то там индуктивности и сколько-то емкости. И действительно, поведение любой передающей линии при низких частотах можно описать, задав ее индуктивность на единицу длины L 0и ее емкость на единицу длины С 0. Тогда линию можно было бы рассматривать как предельный случай фильтра L—С (см. гл. 22, § 7). Можно создать такой фильтр, который будет имитировать линию, если последовательно соединить между собой маленькие элементы индуктивности L 0Δx и зашунтировать их маленькими емкостями С 0Δx (где Δx — элемент длины линии). Применяя к бесконечному фильтру наши прежние результаты, мы бы увидали, что вдоль линии должны распространяться электрические сигналы. Но поступим иначе и вместо этого изучим свойства линии, опираясь на дифференциальные уравнения.

Предположим, мы наблюдаем за происходящим в двух соседних точках передающей линии, скажем, на расстояниях х и х+Δх от начала линии. Обозначим напряжение между проводниками через V(x), а ток в верхнем проводнике I(х) (фиг. 24.2).

Фие 242 Токи и напряжения в передающей линии Если ток в линии меняется то - фото 1369

Фие. 24.2. Токи и напряжения в передающей линии .

Если ток в линии меняется, то индуктивность вызовет падение напряжения вдоль небольшого участка линии от х до x+Δx

Или беря предел при Δ x 0 получаем 241 Изменение тока приводит к - фото 1370

Или, беря предел при Δ x →0, получаем

241 Изменение тока приводит к перепаду напряжения Теперь еще раз взгляните - фото 1371(24.1)

Изменение тока приводит к перепаду напряжения.

Теперь еще раз взгляните на рисунок. Если напряжение в х меняется, то должны появляться заряды, которые на этом участке передаются емкости. Если взять небольшой участок линии от х до x+Δx, то заряд на нем равен q=C 0ΔxV. Скорость изменения этого заряда равна C 0ΔxdV/dt, но заряд меняется только тогда, когда ток I(х), входящий в элемент, отличается от выходящего тока I(х+Δх). Обозначая разность через ΔI, имеем

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 2. Электромагнетизм и материя отзывы


Отзывы читателей о книге Том 2. Электромагнетизм и материя, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x