Ричард Фейнман - Том 2. Электромагнетизм и материя

Тут можно читать онлайн Ричард Фейнман - Том 2. Электромагнетизм и материя - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 2. Электромагнетизм и материя
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 2. Электромагнетизм и материя краткое содержание

Том 2. Электромагнетизм и материя - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить : гл. 12 (вып. 1) «Характеристики силы»

Том 2. Электромагнетизм и материя - читать онлайн бесплатно полную версию (весь текст целиком)

Том 2. Электромагнетизм и материя - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Рассечем наш волновод горизонтально, как показано на фиг. 24.15, где WW 2— стенки волновода, а S 0— источник (провод).

Фиг 2415 Линейный источник S 0 между проводящими плоскими стенками W 1 и W 2 - фото 1420

Фиг. 24.15. Линейный источник S 0 между проводящими плоскими стенками W 1 и W 2 . Стенки можно заменить бесконечной последовательностью изображений источников.

Обозначим направление тока в проводе знаком плюс. Будь у волновода лишь одна стенка, скажем W 1, ее можно было бы убрать, поместив изображение источника (с противоположной полярностью) в точке S 1. Но при двух стенках появится также изображение S 0в стенке W 2; обозначим его S 2. Этот источник также будет обладать своим изображением в W 1; обозначим его S 3. Дальше, сами SS 3изобразятся в W 2точками S 4и S 6и т. д. И для нашей пары плоских проводников с источником посредине поле между проводниками совпадет с полем, генерируемым бесконечной цепочкой источников на расстоянии а друг от друга. (Это на самом деле как раз то, что вы увидите , посмотрев на провод, расположенный посредине между двумя параллельными зеркалами.) Чтобы поля обращались в нуль на стенках, полярности токов в изображениях должны меняться от одного изображения к следующему. Иначе говоря, их фаза меняется на 180°. Поле волновода — это просто суперпозиция полей всей этой бесконечной совокупности линейных источников.

Известно, что вблизи от источников поле очень напоминает статические поля. В гл. 7, § 5 (вып. 5) мы рассматривали статическое поле сетки линейных источников и нашли, что оно похоже на поле заряженной пластины, если не считать членов ряда, убывающих по мере удаления от сетки экспоненциально. У нас средняя сила источников равна нулю, потому что у каждой пары соседних источников знаки противоположны. Любые поля, существующие здесь, должны с расстоянием убывать экспоненциально. Вплотную к источнику мы в основном воспринимаем поле этого ближайшего источника; на больших расстояниях уже воздействует несколько источников, и их суммарное влияние дает нуль. Мы теперь понимаем, отчего волновод ниже граничной частоты дает экспоненциально убывающее поле. При низких частотах годится статическое приближение, и оно предсказывает быстрое ослабление полей с расстоянием.

Теперь зато возникает противоположный вопрос: отчего же в таком случае волны вообще распространяются? Теперь уже это выглядит таинственно! А причина-то в том, что при высоких частотах запаздывание полей может внести в фазу добавочные изменения, которые могут привести к тому, что поля источников с противоположной фазой будут усиливать, а не гасить друг друга. В гл. 29 (вып. 3) мы уже изучали как раз для этой задачи поля, создаваемые системой антенн или оптической решеткой. Тогда мы обнаружили, что соответствующее расположение нескольких радиоантенн может привести к такой интерференционной картине, что в одном направлении сигнал будет очень сильный, а в других сигналов вообще не будет.

Вернемся к фиг. 24.15 и посмотрим на поля на большом расстоянии от линии изображений источников. Поля будут велики лишь в некоторых направлениях, зависящих от частоты, именно в тех направлениях, в каких поля всех источников попадают в фазу друг к другу и складываются. На заметном расстоянии от источников поле в этих специальных направлениях распространяется как плоские волны. Мы изобразили такую волну на фиг. 24.16, где сплошными линиями даны гребни волн, а штрихом — впадины.

Фиг 2416 Одна совокупность когерентных волн от вереницы линейных источников - фото 1421

Фиг. 24.16. Одна совокупность когерентных волн от вереницы линейных источников.

Направление волны должно быть таким, чтобы разность запаздываний от двух соседних источников до гребня волны отвечала полупериоду колебания. Иными словами, разность между r 2и r 0на рисунке равна половине длины волны в пустом пространстве:

Тогда угол θ дается условием 2433 Имеется конечно и другая совокупность - фото 1422

Тогда угол θ дается условием

2433 Имеется конечно и другая совокупность волн бегущих вниз под - фото 1423(24.33)

Имеется, конечно, и другая совокупность волн, бегущих вниз под симметричным углом по отношению к линии источников. А полное поле в волноводе (не слишком близко к источнику) является суперпозицией этих двух совокупностей волн (фиг. 24.17).

Фиг 2417 Поле в волноводе можно рассматривать как наложение двух верениц - фото 1424

Фиг. 24.17. Поле в волноводе можно рассматривать как наложение двух верениц плоских волн.

Конечно, в действительности картина истинных полей совпадает с изображенной лишь в пространстве между стенками волновода.

В таких точках, как А и С , гребни двух волновых картин совпадут, и у поля будет максимум; в точках же наподобие В пики обеих волн направлены в отрицательную сторону, и поле обладает минимумом (наименьшим отрицательным значением). С течением времени поле в волноводе будет двигаться вдоль него. Длина волны будет равна λ g — расстоянию от A до С . Она связана с θ формулой

2434 Подставляя 2433 вместо θ получаем 2435 что в точности совпадает - фото 1425(24.34)

Подставляя (24.33) вместо θ, получаем

2435 что в точности совпадает с 2419 Теперь нам становится понятно - фото 1426(24.35)

что в точности совпадает с (24.19).

Теперь нам становится понятно, почему волны распространяются только выше граничной частоты ω 0. Если длина волн в пустом пространстве больше 2 а , то не существует угла, под которым может появиться волна, показанная на фиг. 24.16. Необходимая для этого конструктивная интерференция возникает внезапно, едва λ 0оказывается меньше 2 а , или, что то же самое, когда ω 0=πс/а.

А если частота достаточно высока, то может появиться два или больше возможных направления распространения волн. В нашем случае это произойдет при λ 0< 2/ 3 а . Но вообще-то это может происходить и при λ 0<���а. Эти добавочные волны отвечают высшим типам волн, о которых мы говорили.

После нашего анализа становится также ясно, отчего фазовая скорость волн, бегущих по трубе, превышает с и зависит от ω. Когда ω меняется, меняется и угол на фиг. 24.16, под которым в пустом пространстве распространяются волны, а вместе с этим меняется и скорость вдоль трубы.

Хотя мы описали волны в волноводе в виде суперпозиции полей бесконечной совокупности линейных источников, но можно убедиться в том, что тот же результат можно было бы получить, представив себе две совокупности волн в пустом пространстве, многократно отражаемых от двух идеальных зеркал вперед и назад, и вспоминая, что подобное отражение означает перемену знака фазы. Эти совокупности отражаемых волн гасили бы друг друга под всеми углами, кроме угла θ [см. (24.33)]. Одну и ту же вещь можно рассматривать многими способами.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 2. Электромагнетизм и материя отзывы


Отзывы читателей о книге Том 2. Электромагнетизм и материя, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x