Ричард Фейнман - Том 2. Электромагнетизм и материя
- Название:Том 2. Электромагнетизм и материя
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - Том 2. Электромагнетизм и материя краткое содержание
Том 2. Электромагнетизм и материя - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Вас может удивить, так ли уж важна теорема о центре масс. Может быть, она нарушается? Возможно, но тогда вы теряете и закон сохранения момента количества движения. Предположим, что наш вагончик движется по рельсам с некоторой скоростью u , и мы «выстреливаем» какое-то количество световой энергии от потолка к полу , например из точки А в точку В (фиг. 27.8).
Фиг. 27.8. Для сохранения момента количества движения относительно точки Р порция энергии U должна нести импульс U/c.
Посмотрим теперь на момент количества движения относительно точки Р . До того как порция энергии U покинула точку А , у нее была масса m = U 2/ c и скорость v, так что ее момент количества движения был равен mvr a . Когда же она прилетела в точку В, масса ее остается прежней, и если импульс всего вагона не изменился, то она по-прежнему должна иметь скорость v . Однако момент количества движения относительно точки Р будет уже mvr B . Таким образом, если вагону при излучении света не передается никакого импульса, т. е. если свет не переносит импульса U / c , то момент количества движения должен измениться. Оказывается, что в теории относительности сохранение момента количества движения и теорема о центре масс тесно связаны между собой. И если неверна теорема, то нарушается и закон сохранения момента количества движения. Во всяком случае, общий закон должен быть справедлив и для электродинамики, так что им можно воспользоваться для получения импульса поля.
Упомянем еще о двух примерах импульса в электромагнитном поле. В гл. 26, §2, мы говорили о нарушении закона действия и противодействия для двух заряженных частиц, движущихся перпендикулярно друг другу. Силы, действующие на эти частицы, не уравновешивают друг друга, так что действие и противодействие оказываются неравными, а полный импульс вещества поэтому должен изменяться. Он не сохраняется. Но в такой ситуации изменяется и импульс поля. Если вы рассмотрите величину импульса, задаваемую вектором Пойнтинга, то она оказывается непостоянной. Однако изменение импульса частицы в точности компенсируется импульсом поля, так что полный импульс частиц и поля все же сохраняется.
Второй наш пример — система заряда и магнита, изображенная на фиг. 27.6. К своему огорчению, мы обнаружили, что в этом примере энергия «бегает по кругу», но, как нам теперь известно, поток энергии и импульса пропорциональны друг другу, поэтому здесь мы имеем дело с циркуляцией импульса. Но циркуляция импульса означает наличие момента количества движения . Поле обладает моментом количества движения . Помните парадокс с соленоидом и зарядами на диске, описанный в гл. 17, § 4? Казалось, что при включении тока весь диск должен начать крутиться.
Остается загадка, откуда возникает этот момент количества движения? Ответ на этот вопрос такой: если у вас есть магнитное поле и какие-то заряды, то поле имеет и момент количества движения. Он возник еще при создании самого поля. Когда же поле выключается, момент количества движения отдается обратно. Так что диск в этом парадоксе начнет крутиться. Таинственный циркулирующий поток энергии, который сначала кажется чем-то непонятным, на самом деле абсолютно необходим. Ведь существует реальный поток импульса. Он необходим для выполнения закона сохранения момента количества движения в целом.
Глава 28 ЭЛЕКТРОМАГНИТНАЯ МАССА
§ 1. Энергия поля точечного заряда
Синтез теории относительности и уравнений Максвелла в основном завершает наше изучение теории электромагнетизма. Разумеется, по дороге мы перескочили через некоторые детали и оставили незатронутой довольно большую область, к которой, однако, мы еще вернемся в будущем, когда займемся взаимодействием электромагнитного поля с веществом. И все же, если еще задержаться на минуту и посмотреть на фасад этого удивительного сооружения, имевшего столь громадный успех в объяснении столь многих явлений, то можно обнаружить, что оно вот-вот завалится и рассыплется на куски. Если вы поглубже вгрызетесь почти в любую из наших физических теорий, то обнаружите, что в конце концов попадаете в какую-нибудь неприятную историю. Сейчас нам предстоит обсудить серьезную трудность — несостоятельность классической электромагнитной теории. Может показаться, что это нарушение, естественно, связано с падением всей классической теории под ударами квантовомеханических эффектов. Возьмите классическую механику. Математически это вполне самосогласованная теория, хотя она и отвергается опытом. Однако самое интересное, что классическая теория электромагнетизма неудовлетворительна сама по себе. В ней до сих пор есть трудности, которые связаны с самими идеями теории Максвелла и которые не имеют непосредственного отношения к квантовой механике. Вы можете подумать: «А зачем нам заранее беспокоиться об этих трудностях. Ведь квантовая механика все равно изменит законы электродинамики. Не лучше ли подождать и посмотреть, во что превратятся эти трудности после изменений?» Однако трудности остаются и после соединения электродинамики с квантовой механикой, так что рассмотрение их сейчас не будет напрасной тратой времени; вдобавок они очень важны с исторической точки зрения. Кроме того, если вы в силах столь глубоко проникнуть в теорию, чтобы увидеть в ней все, не исключая и трудностей, то это дает вам известное чувство завершенности.
Трудность, о которой я собираюсь говорить, связана с приложением понятий электромагнитного импульса и энергии к электрону или другой заряженной частице. Понятия простых заряженных частиц и электромагнитного поля как-то не согласуются друг с другом. Описание этой трудности мы начнем с некоторых примеров вычисления энергии и импульса. Найдем сначала энергию заряженной частицы. Представьте, что мы взяли простейшую модель электрона, когда весь его заряд q равномерно распределен по поверхности сферы радиусом а . В специальном случае точечного заряда мы можем положить его равным нулю. Теперь вычислим энергию электромагнитного поля. Если заряд неподвижен, то никакого магнитного поля вокруг нет, и энергия в единице объема будет пропорциональна квадрату напряженности электрического поля. Величина же напряженности электрического поля равна q/4πε 0r 2, поэтому плотность энергии
Интервал:
Закладка: