Ричард Фейнман - Том 2. Электромагнетизм и материя

Тут можно читать онлайн Ричард Фейнман - Том 2. Электромагнетизм и материя - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 2. Электромагнетизм и материя
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 2. Электромагнетизм и материя краткое содержание

Том 2. Электромагнетизм и материя - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить : гл. 12 (вып. 1) «Характеристики силы»

Том 2. Электромагнетизм и материя - читать онлайн бесплатно полную версию (весь текст целиком)

Том 2. Электромагнетизм и материя - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
ТЕОРЕМА СТОКСА

338 где S произвольная поверхность ограниченная контуром Γ Теперь мы - фото 167(3.38)

где S — произвольная поверхность, ограниченная контуром Γ. Теперь мы должны ввести соглашение о знаках. На приведенной ранее фиг. 3.10 ось z показывает на вас, если система координат «обычная», т. е. «правая». Когда в криволинейном интеграле мы брали «положительное» направление обхода, то циркуляция получилась равной z-компоненте вектора × C. Обойди мы контур в другую сторону, мы бы получили противоположный знак. Как вообще узнавать, какое направление надо выбирать для положительного направления «нормальной» компоненты вектора × C? «Положительную» нормаль надо всегда связывать с направлением так, как это сделано было на фиг. 3.10. Общий случай показан на фиг. 3.11.

Для запоминания годится «правило правой руки». Если вы расположите пальцы вашей правой руки вдоль контура Γ, чтобы кончики пальцев показывали положительное направление обхода ds , то ваш большой палец укажет направление положительной нормали к поверхности S .

§ 7. Поля без роторов и поля без дивергенций

Теперь перейдем к некоторым следствиям из наших новых теорем. Возьмем сперва случай вектора, у которого ротор (или вихрь) повсюду равен нулю. Тогда, согласно теореме Стокса, циркуляция по любому контуру — нуль. Если мы теперь возьмем две точки (1) и (2) на замкнутой кривой (фиг. 3.12), то криволинейный интеграл от касательной составляющей от (1) до (2) не должен зависеть от того, какой из двух возможных путей мы выбрали.

Фиг 312 Если С равно нулю то циркуляция по замкнутой привой Γ тоже нуль - фото 168

Фиг. 3.12. Если ∇×С равно нулю, то циркуляция по замкнутой привой Γ тоже нуль. Криволинейный интеграл от C·ds на участке от (1) до (2) вдоль а должен быть равен интегралу вдоль b.

Можно заключить, что интеграл от (1) до (2) может зависеть только от расположения этих точек, т. е. что он есть функция только от координат точек. Той же логикой мы пользовались в вып. 1, гл. 14, когда доказывали, что если интеграл от некоторой величины по произвольному замкнутому контуру всегда равен нулю, то этот интеграл может быть представлен в виде разности функций от координат двух концов. Это позволило нам изобрести понятие потенциала. Мы доказали далее, что векторное поле является градиентом этой потенциальной функции [см. вып. 1, уравнение (14.13)].

Отсюда следует, что любое векторное поле, у которого ротор равен нулю, может быть представлено в виде градиента некоторой скалярной функции, т. е. если × C=0 всюду, то существует некоторая функция ψ (пси), для которой С= ψ (полезное представление). Значит, мы можем, если захотим, описывать этот род векторных полей при помощи скалярных полей.

Теперь докажем еще одну формулу. Пусть у нас есть произвольное скалярное поле φ (фи). Если взять его градиент φ, то интеграл от этого вектора по любому замкнутому контуру должен быть равен нулю. Криволинейный интеграл от точки (1) до точки (2) равен [φ(2)-φ(1)]. Если точки (1) и (2) совпадают, то наша теорема 1 [уравнение (3.8)] сообщает нам, что криволинейный интеграл равен нулю:

Применяя теорему Стокса можно заключить что по любой поверхности Но раз - фото 169

Применяя теорему Стокса, можно заключить, что

по любой поверхности Но раз интеграл по любой поверхности равен нулю то - фото 170

по любой поверхности. Но раз интеграл по любой поверхности равен нулю, то подынтегральное выражение обязано быть равно нулю. Значит,

Тот же результат был доказан в гл 2 7 при помощи векторной алгебры - фото 171

Тот же результат был доказан в гл. 2, § 7 при помощи векторной алгебры.

Рассмотрим теперь частный случай, когда на маленький контур Γ натягивается большая поверхность S (фиг. 3.13).

Фиг 313 При переходе к пределу замкнутой поверхности поверхностный интеграл - фото 172

Фиг. 3.13. При переходе к пределу замкнутой поверхности поверхностный интеграл от (∇×С) n должен обратиться в нуль.

Мы хотим посмотреть, что случится, когда контур стянется в точку. Тогда граница поверхности исчезнет, а сама поверхность превратится в замкнутую. Если вектор Сповсюду конечен, то криволинейный интеграл по Γ должен стремиться к нулю по мере стягивания контура (интеграл в общем-то пропорционален длине контура Γ, а она убывает). Согласно теореме Стокса, поверхностный интеграл от ( × С) nтоже должен убывать до нуля. Когда поверхность замыкается, то при этом каким-то образом в интеграл привносится вклад, который взаимно уничтожается с накопленным ранее. Получается новая теорема:

Это нас должно заинтересовать потому что у нас уже есть одна теорема о - фото 173

Это нас должно заинтересовать, потому что у нас уже есть одна теорема о поверхностном интеграле векторного поля. Такой поверхностный интеграл равен объемному интегралу от дивергенции вектора, как это следует из теоремы Гаусса [уравнение (3.18)]. Теорема Гаусса в применении к × Сутверждает, что

340 Мы заключаем что интеграл в правой части должен обращаться в нуль - фото 174(3.40)

Мы заключаем, что интеграл в правой части должен обращаться в нуль

341 и что это должно быть справедливо для любого векторного поля С каким бы - фото 175(3.41)

и что это должно быть справедливо для любого векторного поля С, каким бы оно ни было. Раз уравнение (3.41) выполнено для произвольного объема , то в каждой точке пространства подынтегральное выражение должно быть равно нулю. Получается, что

Тот же результат был выведен с помощью векторной алгебры в гл 2 7 Теперь - фото 176

Тот же результат был выведен с помощью векторной алгебры в гл. 2, § 7. Теперь мы начинаем понимать, как все здесь прилажено одно к другому.

§ 8. Итоги

Подытожим теперь все, что мы узнали о векторном исчислении. Вот самые существенные моменты гл. 2 и 3.

1. Операторы ∂/∂ x , ∂/∂ y и ∂/∂ z можно рассматривать как три составляющих векторного оператора ; формулы, следующие из векторной алгебры, остаются правильными, если этот оператор считать вектором

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 2. Электромагнетизм и материя отзывы


Отзывы читателей о книге Том 2. Электромагнетизм и материя, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x