Ричард Фейнман - Том 2. Электромагнетизм и материя

Тут можно читать онлайн Ричард Фейнман - Том 2. Электромагнетизм и материя - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 2. Электромагнетизм и материя
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 2. Электромагнетизм и материя краткое содержание

Том 2. Электромагнетизм и материя - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить : гл. 12 (вып. 1) «Характеристики силы»

Том 2. Электромагнетизм и материя - читать онлайн бесплатно полную версию (весь текст целиком)

Том 2. Электромагнетизм и материя - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Пусть по проводу течет ток I. Каково при этом магнитное поле? Оно будет сосредоточено главным образом внутри железа, причем там (см. фиг. 36.7, б ) силовые линии должны быть круговыми. Вследствие постоянства потока Вего дивергенция равна нулю, и уравнение (36.16) удовлетворяется автоматически. Запишем затем уравнение (36.17) в другой форме, проинтегрировав его по замкнутому контуру Г, показанному на фиг. 36.7, б . Из теоремы Стокса мы получаем

3619 где интеграл от jберется по поверхности S ограниченной контуром Г - фото 2124(36.19)

где интеграл от jберется по поверхности S , ограниченной контуром Г. Каждый виток обмотки пересекает эту поверхность один раз, поэтому каждый виток дает в интеграл вклад, равный I , а поскольку всего витков N штук, то интеграл будет равен NI . Из симметрии нашей задачи видно, что Водинаково на всем контуре Г, если, конечно, намагниченность, а следовательно, и поле Нтоже постоянны на контуре Г. Уравнение (36.19) при таких условиях принимает вид

Том 2 Электромагнетизм и материя - изображение 2125

где l —длина кривой Г. Таким образом,

3620 Именно изза того что в задачах подобного типа поле Нпрямо - фото 2126(36.20)

Именно из-за того что в задачах подобного типа поле Нпрямо пропорционально намагничивающему току, оно иногда называется намагничивающим .

Единственное, что нам теперь требуется, — это уравнение, связывающее Нс В. Однако такого уравнения просто не существует! У нас есть, конечно, уравнение (36.18), но от него мало проку, ибо в ферромагнитных материалах типа железа оно не дает прямой связи между Ми В. Намагниченность Мзависит от всей предыдущей истории данного образца железа, а не только от того, каково поле Вв данный момент и как оно изменялось раньше.

Впрочем, еще не все потеряно. В некоторых простых случаях мы все же можем найти решение. Если взять ненамагниченное железо, скажем, отожженное при высокой температуре, то для такого простого тела, как тор, магнитная предыстория всего железа будет одной и той же. Затем из экспериментальных измерений мы можем кое-что сказать относительно М, а следовательно, и о связи между Ви Н. Из уравнения (36.20) видно, что поле Hвнутри тора равно произведению некоторой постоянной на величину тока в обмотке I. А поле Вможно измерить интегрированием по времени э.д.с. в намагничивающей обмотке, изображенной на рисунке (или в дополнительной обмотке, намотанной поверх нее). Эта э.д.с. равна скорости изменения потока В, так что интеграл от э.д.с. по времени равен произведению Вна площадь поперечного сечения тора.

На фиг. 36.8 показано соотношение между Ви Н, наблюдаемое в сердечнике из мягкого железа.

Фиг 368 Типичная кривая намагничивания и петля гистерезиса мягкого железа - фото 2127

Фиг. 36.8. Типичная кривая намагничивания и петля гистерезиса мягкого железа.

Когда ток включается в первый раз, увеличение Вс Нпроисходит по кривой а . Обратите внимание на различие масштабов по осям Ви Н; вначале, чтобы получить большое В, необходимо относительно малое Н. Почему же в случае железа поле Внамного больше, чем было бы без него? Да потому, что возникает большая намагниченность М, эквивалентная большому поверхностному току в железе, а поле определяется суммой этого тока и тока проводимости в обмотке. А почему намагниченность Моказывается такой большой, мы обсудим позднее.

При больших значениях Нкривая намагничивания «выравнивается». Мы говорим, что железо насыщается . В масштабах нашей фигуры кривая становится горизонтальной, на самом же деле намагниченность продолжает слабо расти: для больших полей Встановится равным Ни намагниченность Муже не увеличивается. Кстати, если бы сердечник был сделан из немагнитного материала, то намагниченность Мбыла бы равна нулю, а Вбыло бы равно для всех полей Н.

Прежде всего заметим, что кривая а на фиг. 36.8, так называемая кривая намагничивания , — в высшей степени нелинейна. Впрочем, положение здесь гораздо сложнее. Если после достижения насыщения мы уменьшим ток в катушке и вернем Нснова к нулю, магнитное поле Вбудет падать по кривой b . Когда Ндостигнет нуля, Веще не будет нулем. Даже после выключения намагничивающего тока магнитное поле в железе остается: железо становится постоянно намагниченным. Если теперь включить в катушке ток в обратном направлении , то кривая ВНпойдет дальше по ветви b до тех пор, пока железо не намагнитится до насыщения в противоположном направлении. При дальнейшем уменьшении тока до нуля Впойдет по кривой с . Когда мы меняем ток от большой положительной до большой отрицательной величины, кривая ВНбудет идти вверх и вниз очень близко к ветвям b и c . Если же, однако, Нменять каким-то произвольным образом, то возникнут более сложные кривые, которые, вообще говоря, будут лежать между кривыми b и c . Кривая, полученная повторными изменениями полей, называется петлей гистерезиса .

Вы видите, что невозможно написать функциональное соотношение типа В= f ( Н), так как Вв любой момент зависит не только от Нв тот же момент, но и от всей предыстории материала. Естественно, что намагниченность и петли гистерезиса для разных веществ различны. Форма кривых критически зависит от химического состава материала, а также от деталей технологии его приготовления и последующей физической обработки. В следующей главе мы обсудим физическое объяснение некоторых из этих сложностей.

§ 4. Индуктивность с железным сердечником

Одно из наиболее важных применений магнитные материалы находят в электрических устройствах, например трансформаторах, электрических моторах и т. п. Объясняется это прежде всего тем, что с помощью железа можно контролировать поведение магнитного поля, а также при данном электрическом токе получать значительно большие поля. Например, типичное «тороидальное» индуктивное устройство во многом напоминает то, что изображено на фиг. 36.7. При большой индуктивности мы можем сделать устройство гораздо меньшего объема и затратить намного меньше меди, чем в эквивалентном устройстве с «воздушным сердечником». Поэтому при большой индуктивности мы добиваемся гораздо меньшего сопротивления обмотки, так что устройство более близко к «идеальному», особенно при низких частотах. Нетрудно качественно проследить, как работает такое устройство. Если в обмотке течет ток I , то создаваемое внутри поле Н , как это видно из уравнения (36.20), пропорционально току I . Напряжение V на выводах связано с магнитным полем В . Если пренебречь сопротивлением обмотки, то напряжение V будет пропорционально dB / dt . Индуктивность ℒ, которая равна отношению V к dI / dt (см. гл. 17, § 7, вып. 6), зависит, таким образом, от связи между В и Н в железе. Поскольку В гораздо больше Н, то это во много раз увеличивает индуктивность, как будто малый ток в катушке, который обычно дает слабое магнитное поле, заставляет выстраиваться маленькие магнитики, сидящие в железе, и создает «магнитный» ток, который в огромное число раз больше внешнего тока в обмотке. Все происходит так, как будто в катушке возникает ток, намного больший, чем на самом деле. Когда мы меняем направление тока, все маленькие магнитики переворачиваются, внутренние токи потекут в другом направлении и наведенная э.д.с. получается гораздо больше, чем без железа. Если мы хотим вычислить индуктивность, то это можно сделать, вычисляя энергию наподобие того, как описано в гл. 17, § 8. Скорость, с которой энергия отдается источником тока, равна IV. Напряжение V равно площади поперечного сечения сердечника А , умноженной на N и на dB / dt . А согласно выражению (36.20), I =(ε 0 c 2 l / N ) H . Таким образом,

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 2. Электромагнетизм и материя отзывы


Отзывы читателей о книге Том 2. Электромагнетизм и материя, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x