Ричард Фейнман - Том 2. Электромагнетизм и материя

Тут можно читать онлайн Ричард Фейнман - Том 2. Электромагнетизм и материя - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 2. Электромагнетизм и материя
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 2. Электромагнетизм и материя краткое содержание

Том 2. Электромагнетизм и материя - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить : гл. 12 (вып. 1) «Характеристики силы»

Том 2. Электромагнетизм и материя - читать онлайн бесплатно полную версию (весь текст целиком)

Том 2. Электромагнетизм и материя - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Когда число Рейнольдса проходит через значения в районе 40, поток снова меняется. Характер движения претерпевает неожиданное и резкое изменение. Один из вихрей за цилиндром становится настолько длинным, что он отрывается и плывет вниз по течению вместе с жидкостью. При этом жидкость за цилиндром снова закручивается и возникает новый вихрь. Эти вихри поочередно отслаиваются то с одной, то с другой стороны, так что в какой-то момент поток выглядит приблизительно так, как показано на фиг. 41.6, в . Такой поток вихрей называется вихревой цепочкой Кармана. Она всегда появляется для чисел Рейнольдса ℛ>40. Фотография такого потока показана на фиг. 41.7.

Фиг 417 Фотография цепочки вихрей в потоке за цилиндром Разница в режиме - фото 2460

Фиг. 41.7. Фотография цепочки вихрей в потоке за цилиндром.

Разница в режиме между двумя потоками, изображенными на фиг. 41.6, а, б или в , очень велика. На фиг. 41.6, а и б скорость постоянна, тогда как на фиг. 41.6, в скорость в любой точке изменяется со временем. Выше ℛ=40 стационарное решение отсутствует; граница перехода отмечена на фиг. 41.4 пунктирной линией. Для таких более высоких чисел поток изменяется со временем некоторым регулярным периодическим образом. Создаются вихри.

Можно представить себе физическую причину возникновения этих вихрей. Мы знаем, что на поверхности цилиндра скорость жидкости должна быть равна нулю, но при удалении от поверхности скорость быстро возрастает. Это большое местное изменение скорости жидкости и создает вихри. Когда скорость основного потока достаточно мала, у вихрей хватает времени, чтобы продиффундировать из тонкого слоя вблизи поверхности твердого тела, где они создаются, и «расплыться» на большую область. Эта физическая картина должна подготовить нас к следующему изменению природы потока, когда скорость основного потока или число ℛ увеличивается еще больше.

По мере возрастания скорости у вихря остается все меньше и меньше времени, чтобы «расплываться» на большую область жидкости. К тому моменту, когда число Рейнольдса достигнет нескольких тысяч, вихри начинают заполнять тонкую ленту (фиг. 41.6, г ). В таком слое поток хаотичен и нерегулярен. Такая область называется пограничным слоем , и этот нерегулярный поток с увеличением ℛ пробивает себе путь все дальше и дальше вниз по течению. В области турбулентности скорости очень нерегулярны и «беспорядочны», вдобавок поток больше не двумерный — он крутится во всех трех измерениях. Кроме того, на турбулентное движение налагается еще регулярное переменное движение.

При дальнейшем увеличении числа Рейнольдса область турбулентности пробирается вперед, пока при потоке с ℛ, превышающим 10 5, не достигнет места, где линии тока огибают цилиндр. При этом поток будет похож на то, что показано на фиг. 41.6, д , и мы получаем так называемый «турбулентный след». Кроме того, происходят еще коренные изменения в силе увлечения — она, как видно из фиг. 41.4, сильно падает. При таких скоростях увлекающая сила с возрастанием скорости действительно уменьшается . По-видимому, здесь проявляется некоторое стремление к периодичности.

А что происходит при еще больших числах Рейнольдса? С дальнейшим увеличением скорости размер области турбулентности снова увеличивается и сила сопротивления возрастает. Последние эксперименты, которые дошли до области ℛ=10 7или несколько больше, показывают, что в турбулентной области появляется новая периодичность, быть может, потому, что вся область колеблется вперед и назад в общем движении, а может быть, из-за нового сорта вихрей, которые появляются вместе с нерегулярным «шумовым» движением. Детали его полностью еще не ясны, и они до сих пор изучаются экспериментально.

§ 5. Предел пулевой вязкости

Мне бы хотелось подчеркнуть, что ни один из описанных нами потоков ни в каком отношении не похож на решение уравнения потенциального потока, о котором говорилось в предыдущей главе. На первый взгляд это очень удивительно. Ведь ℛ в конце концов пропорционально 1/η. Так что предел η→0 эквивалентен пределу ℛ→∞. И если мы перейдем к пределу больших ℛ в (41.23), то избавимся от правой части и получим как раз уравнения из предыдущей главы. Но все же трудно поверить, что сильно турбулентный поток с ℛ=10 7хоть в какой-то степени приближается к гладкому потоку, вычисленному из уравнений «сухой» воды. Как может случиться, что при ℛ=∞ поток, описываемый уравнением (41.23), дает решение, полностью отличное от решения, полученного при η=0, с которого мы начали? Ответ очень интересен. Обратите внимание, что в правой части (41.23) стоит произведение 1/ ℛ на вторую производную . Это наиболее высокая степень производной в уравнении: слева только первые производные. Получается так, что, хотя коэффициент 1/ ℛ становится малым, Ω в пространстве вблизи поверхности претерпевает очень быстрые изменения. Эти резкие изменения компенсируют малость коэффициента, и произведение с увеличением R не стремится к нулю . Поэтому, хотя коэффициент при ∇ 2Ω стремится к нулю, решения не приближаются к предельному случаю.

Вас может удивить: «Что же такое мелкомасштабная турбулентность и как она может поддерживать сама себя? Как завихренность, которая создается где-то на краях цилиндра, приводит к такому шуму позади него?». Ответ снова очень интересен. Завихренность имеет тенденцию к самоусилению. Если мы на минуту забудем о диффузии завихренности, которая обусловливает потери, то законы потока говорят (как мы уже видели), что линии вихря переносятся вместе с жидкостью со скоростью v. Представьте себе некоторое количество линий Ω, которые возмущаются и скручиваются очень сложной картиной скоростей потока v. Прежде простые линии спутаются и сожмутся. Величина завихренности будет возрастать, равно как и ее нерегулярности (положительные и отрицательные), которые, вообще говоря, тоже будут увеличиваться. Таким образом, завихренность в трех измерениях по мере перемешивания жидкости будет возрастать.

Вы можете также спросить: «Когда же в конце концов справедлива теория потенциального потока?» Прежде всего она удовлетворительна вне турбулентной области, куда проникновение завихренности из-за диффузии незначительно. Изготовляя специальные обтекаемые тела, мы стараемся сделать область турбулентности как можно меньше. Поток, обтекающий крылья самолета, которые имеют специальную рассчитанную форму, — почти настоящий потенциальный поток.

§ 6. Поток Куеттэ

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 2. Электромагнетизм и материя отзывы


Отзывы читателей о книге Том 2. Электромагнетизм и материя, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x