Ричард Фейнман - Том 2. Электромагнетизм и материя

Тут можно читать онлайн Ричард Фейнман - Том 2. Электромагнетизм и материя - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 2. Электромагнетизм и материя
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 2. Электромагнетизм и материя краткое содержание

Том 2. Электромагнетизм и материя - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить : гл. 12 (вып. 1) «Характеристики силы»

Том 2. Электромагнетизм и материя - читать онлайн бесплатно полную версию (весь текст целиком)

Том 2. Электромагнетизм и материя - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Теперь нам предстоит найти вязкую силу f вязк, действующую на единицу объема, после чего мы сможем подставить ее в уравнение (41.1) и получить уравнение движения реальной жидкости. Сила, действующая на маленький кубический объем жидкости, представляет собой равнодействующую всех сил, действующих на все шесть граней. Взяв их по две сразу, мы получим разность, которая зависит от производных напряжений, и, следовательно, от вторых производных скоростей. Это приятный результат, ибо он приведет нас опять к векторному уравнению. Компонента вязкой силы, действующей на единицу объема в направлении оси х i , равна

4114 Обычно зависимость коэффициентов вязкости от координат положения - фото 2435(41.14)

Обычно зависимость коэффициентов вязкости от координат положения несущественна и ею можно пренебречь. Тогда вязкая сила на единицу объема содержит только вторые производные скорости. Мы видели в гл. 39, что наиболее общей формой вторых производных в векторном уравнении будет сумма Лапласиана ( · ) v= 2 vи градиента дивергенции ( ( · v)). Выражение (41.14) представляет как раз такую сумму с коэффициентами η и (η+η'). Мы получаем

4115 В случае несжимаемой жидкости v0 и вязкая сила в единице объема - фото 2436(41.15)

В случае несжимаемой жидкости · v=0 и вязкая сила в единице объема будет просто равна η 2 v. Это и все, чем обычно пользуются; однако если вам понадобится вычислить поглощение звука в жидкости, то вам потребуется и второй член. Теперь мы можем закончить вывод уравнения движения реальной жидкости. Подставляя (41.15) в уравнение (41.1), получаем

Уравнение получилось конечно сложное но ничего не поделаешь такова природа - фото 2437

Уравнение получилось, конечно, сложное, но ничего не поделаешь, такова природа.

Если мы введем Ω= × v, как делали это раньше, то наше уравнение можно записать в виде

4116 Мы снова предполагаем что единственными объемными силами являются - фото 2438(41.16)

Мы снова предполагаем, что единственными объемными силами являются консервативные силы типа сил тяжести. Чтобы понять смысл нового члена, давайте рассмотрим случай несжимаемой жидкости. Если мы возьмем ротор уравнения (41.16), то получим

4117 Это напоминает 409 с той только разницей что в правой части - фото 2439(41.17)

Это напоминает (40.9) с той только разницей, что в правой части имеется еще одно слагаемое. Когда правая часть была равна нулю, то имелась теорема Гельмгольца о том, что вихри всегда движутся вместе с жидкостью. Теперь же в правой части появилось довольно сложное выражение, из которого, однако, не сразу же следуют физические выводы. Если бы мы пренебрегли членом ×( Ω× v), то получили бы диффузионное уравнение . Новый член означает, что вихри диффундируют в жидкости. При большом градиенте вихри расползаются в соседние области жидкости.

Именно поэтому утолщаются кольца табачного дыма. С этим же связано красивое явление, возникающее при прохождении кольца «чистого» вихря (т. е. «бездымного» кольца, созданного с помощью описанной в предыдущей главе аппаратуры) через облако дыма. Когда оно выходит из облака, к нему «прилипает» некое количество дыма и мы видим полую оболочку из дыма. Какое-то количество завихренности Ωдиффундирует в окружающий дым, продолжая свое движение вперед вместе с вихрем.

§ 3. Число Рейнольдса

Посмотрим теперь, как изменяется течение жидкости из-за нового члена с вязкостью. Рассмотрим несколько подробнее две задачи. Первая — обтекание жидкостью цилиндра; эту задачу мы пытались решить в предыдущей главе, используя теорию невязкой жидкости. Оказывается, что сегодня возможно найти решение вязких уравнений только для некоторых специальных случаев. Так что кое-что из того, что я расскажу вам, основано на экспериментальных измерениях, считая, конечно, что экспериментальная модель удовлетворяла уравнению (41.17).

Математически задача состоит в следующем: мы хотим найти решение для потока несжимаемой вязкой жидкости вблизи длинного цилиндра диаметром D . Поток должен определяться уравнением (41.17) и

Том 2 Электромагнетизм и материя - изображение 2440(41.18)

с условием, что скорость на больших расстояниях равна некоторой постоянной V (параллельной оси х ), а на поверхности цилиндра равна нулю. Так что

4119 при Это полностью определяет математическую задачу Если вы - фото 2441(41.19)

при

Это полностью определяет математическую задачу Если вы вглядитесь в эти - фото 2442

Это полностью определяет математическую задачу.

Если вы вглядитесь в эти выражения, то увидите, что в задаче есть четыре различных параметра: η, ρ, D и V . Можно подумать, что нам придется иметь дело с целой серией решений для разных V, разных D и т. д. Вовсе нет. Все возможные различные решения соответствуют разным значениям одного параметра . Такова наиболее важная общая вещь, которую мы можем сказать о вязком потоке. А чтобы понять, почему это так, заметьте сначала, что вязкость и плотность появляются в виде отношения η/ρ, т. е. удельной вязкости. Это уменьшает число независимых параметров до трех. Предположим теперь, что все расстояния мы измеряем в единицах той единственной длины, которая появляется в задаче: диаметра цилиндра D , т. е. вместо х, у, z мы вводим новые переменные х ', у ', z ', причем

При этом параметр D из 4119 исчезает Точно так же если будем измерять все - фото 2443

При этом параметр D из (41.19) исчезает. Точно так же если будем измерять все скорости в единицах V, т. е. если мы положим v = v ' V , то избавимся от V , а v' на больших расстояниях будет просто равно единице. Поскольку мы фиксировали наши единицы длины и скорости, то единицей времени теперь должно быть D / V , так что мы должны сделать подстановку:

Том 2 Электромагнетизм и материя - изображение 2444(41.20)

В наших новых переменных производные в уравнении (41.18) тоже изменятся: так, ∂/∂ х перейдет в (1/ D )(∂/∂ х ') и т. д., так что уравнение (41.18) превратится в

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 2. Электромагнетизм и материя отзывы


Отзывы читателей о книге Том 2. Электромагнетизм и материя, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x