Ричард Фейнман - Том 3. Квантовая механика

Тут можно читать онлайн Ричард Фейнман - Том 3. Квантовая механика - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 3. Квантовая механика
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 3. Квантовая механика краткое содержание

Том 3. Квантовая механика - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить

Том 3. Квантовая механика - читать онлайн бесплатно полную версию (весь текст целиком)

Том 3. Квантовая механика - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Фиг 410 Ось А определяемая полярными углами θ и φ Мы хотим знать - фото 267

Фиг. 4.10. Ось А, определяемая полярными углами θ и φ.

Мы хотим знать амплитуду +|ψ> того, что частица относительно оси z окажется в состоянии «вверх», и амплитуду -|ψ> того, что она окажется в состоянии «вниз» относительно той же оси z . Эти амплитуды мы можем найти, вообразив, что А есть ось z ' системы, у которой ось х ' направлена произвольно, скажем лежит в плоскости, образованной А и z. Тогда можно перевести систему А в систему х, у, z тремя поворотами. Во-первых, надо сделать поворот на -π/2 вокруг оси A , что переведет ось x в линию В на рисунке. Затем повернуть на -θ вокруг линии В (вокруг новой оси х системы А ), чтобы ось А попала на ось z . И, наконец, повернуть вокруг оси z на угол (π/2-φ). Вспоминая, что вначале было только одно состояние (+) по отношению к А , получаем

436 Мы хотели бы напоследок подытожить результаты этой главы в форме - фото 268(4.36)

Мы хотели бы напоследок подытожить результаты этой главы в форме, которая окажется полезной для нашей дальнейшей работы. Во-первых, напомним, что наш основной результат (4.35) может быть записан в других обозначениях. Заметьте, что (4.35)— это то же самое, что и (4.4) Иначе говоря, в (4.35) коэффициенты при С +=<+S|ψ> и C' -=<- S |ψ> суть как раз амплитуды < jT | iS > в (4.4), амплитуды того, что частица в состоянии i по отношению к S окажется в состоянии j по отношению к Т (когда ориентация Т по отношению к S дается углами α, β и γ). Мы их также называли R TS ji в выражении (4.6). (Чего-чего, а обозначений у нас хватало!) Например, R TS -+=<-T|+S> — это коэффициент при С +в формуле для С -, а именно i sin(α/2)exp[ i (β-γ)/2]. Поэтому сводку наших результатов мы можем дать в виде табл. 4.1.

Таблица 4.1. АМПЛИТУДЫ < jT | iS > ДЛЯ ПОВОРОТА, ОПРЕДЕЛЯЕМОГО УГЛАМИ ЭЙЛЕРА α, β, γ (ФИГ. 4.9)

Было бы удобно иметь эти амплитуды расписанными для некоторых особо важных - фото 269

Было бы удобно иметь эти амплитуды расписанными для некоторых особо важных случаев. Пусть R z (φ) — поворот на угол φ вокруг оси z. Так же можно обозначить и соответствующую матрицу поворота (опуская молчаливо подразумеваемые индексы i и j ). В том же смысле R x (φ) и R y (φ) будут обозначать повороты на угол φ вокруг оси х и оси у .

В табл. 4.2 мы приводим матрицы — таблицы амплитуд < jT | iS >, которые проецируют амплитуды из системы S в систему Т , где Т получается из S указанным поворотом.

Таблица 4.2 . АМПЛИТУДЫ ДЛЯ ПОВОРОТА R (φ) НА УГОЛ φ ВОКРУГ ОДНОЙ ИЗ ОСЕЙ R я (φ)

Глава 5 ЗАВИСИМОСТЬ АМПЛИТУД ОТ ВРЕМЕНИ Повторить гл 17 вып 2 - фото 270

Глава 5 ЗАВИСИМОСТЬ АМПЛИТУД ОТ ВРЕМЕНИ

Повторить : гл. 17 (вып. 2) «Пространство-время»; гл. 48 (вып. 4) «Биения»

§ 1. Покоящиеся атомы; стационарные состояния

Мы хотим теперь немного рассказать о том, как ведут себя амплитуды вероятности во времени. Мы говорим «немного», потому что на самом деле поведение во времени с необходимостью включает в себя и поведение в пространстве. Значит, пожелав описать поведение со всей корректностью и детальностью, мы немедленно очутимся в весьма сложном положении. Перед нами возникает наша всегдашняя трудность — то ли изучать нечто строго логически, но абсолютно абстрактно, то ли не думать о строгости, а давать какое-то представление об истинном положении вещей, откладывая более тщательное исследование на позже. Сейчас, говоря о зависимости амплитуд от энергии, мы намерены избрать второй способ. Будет высказан ряд утверждений. При этом мы не будем стремиться к строгости, а просто расскажем вам о том, что было обнаружено, чтобы вы смогли почувствовать, как ведут себя амплитуды во времени. По мере хода нашего изложения точность описания будет возрастать, так что, пожалуйста, не нервничайте, видя, как фокусник будет извлекать откуда-то из воздуха разные вещи. Они и впрямь берутся из чего-то неосязаемого — из духа эксперимента и из воображения многих людей. Но проходить все стадии исторического развития предмета — дело очень долгое, кое-что придется просто пропустить. Можно было бы погрузиться в абстракции и все строго выводить (но вы вряд ли бы это поняли) или пройти через множество экспериментов, подтверждая ими каждое свое утверждение. Мы выберем что-то среднее.

Одиночный электрон в пустом пространстве может при некоторых условиях обладать вполне определенной энергией. Например, если он покоится (т. е. не обладает ни перемещательным движением, ни импульсом, ни кинетической энергией), то у него есть энергия покоя. Объект посложнее, например атом, тоже может, покоясь, обладать определенной энергией, но он может оказаться и внутренне возбужденным — возбужденным до другого уровня энергии. (Механизм этого мы опишем позже.) Часто мы вправе считать, что атом в возбужденном состоянии обладает определенной энергией; впрочем, на самом деле это верно только приближенно. Атом не остается возбужденным навечно, потому что он всегда стремится разрядить свою энергию, взаимодействуя с электромагнитным полем. Так что всегда есть некоторая амплитуда того, что возникнет новое состояние — с атомом в низшем состоянии возбуждения и электромагнитным полем в высшем. Полная энергия системы и до, и после — одна и та же, но энергия атома уменьшается. Так что не очень точно говорить, что у возбужденного атома есть определенная энергия; но часто так говорить удобно и не очень неправильно.

[Кстати, почему все течет в одну сторону и не течет в другую? Отчего атом излучает свет? Ответ связан с энтропией. Когда энергия находится в электромагнитном поле, то перед ней открывается столько разных путей — столько разных мест, куда она может попасть, — что, отыскивая условие равновесия, мы убеждаемся, что в самом вероятном положении поле оказывается возбужденным одним фотоном, а атом — невозбужденным. И фотону требуется немалое время, чтобы возвратиться и обнаружить, что он может возбудить атом обратно. Это полностью аналогично классической задаче: почему ускоряемый заряд излучает? Не потому, что он «хочет» утратить энергию, нет, ведь на самом-то деле, когда он излучает, энергия мира остается такой же, как и прежде. Просто излучение или поглощение всегда идет в направлении роста энтропии .]

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 3. Квантовая механика отзывы


Отзывы читателей о книге Том 3. Квантовая механика, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x