Ричард Фейнман - Том 3. Квантовая механика

Тут можно читать онлайн Ричард Фейнман - Том 3. Квантовая механика - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 3. Квантовая механика
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 3. Квантовая механика краткое содержание

Том 3. Квантовая механика - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить

Том 3. Квантовая механика - читать онлайн бесплатно полную версию (весь текст целиком)

Том 3. Квантовая механика - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Ясно, что этот электрон сможет перейти к другому атому, перенося в новое место отрицательный ион. Мы предположим, что (в точности, как и в случае электрона, «прыгавшего» от протона к протону) электрон может с какой-то амплитудой «прыгать» от атома к его соседям с любой стороны.

Как же описывать такую систему? Что считать разумными базисными состояниями? Если вы вспомните, что мы делали, когда у электрона было только две возможные позиции, вы сможете догадаться. Пусть в нашей цепочке все расстояния между атомами одинаковы, и пусть мы их пронумеруем по порядку, как на фиг. 11.1, а . Одно базисное состояние — когда электрон находится возле атома № 6; другое базисное состояние — когда электрон находится возле № 7, или возле № 8, и т. д.; n -е базисное состояние можно описать, сказав, что электрон находится возле атома № n . Обозначим это базисное состояние | n >. Из фиг. 11.1 ясно, что подразумевается под тремя базисными состояниями:

С помощью этих наших базисных состояний можно описать любое состояние φ - фото 811

С помощью этих наших базисных состояний можно описать любое состояние |φ> нашего одномерного кристалла, задав все амплитуды < n |φ> того, что состояние |φ> находится в одном из базисных состояний, т. е. амплитуду того, что электрон расположен близ данного частного атома. Тогда состояние |φ> можно записать в виде суперпозиции базисных состояний:

111 Кроме того мы хотим еще предположить что когда электрон находится - фото 812(11.1)

Кроме того, мы хотим еще предположить, что когда электрон находится близ одного из атомов, то имеется некоторая амплитуда того, что он просочится к тому атому, что слева, или к тому, что справа. Возьмем простейший случай, когда считается, что он может просочиться только к ближайшим соседям, а к следующему соседу он сможет дойти в два приема. Примем, что амплитуды того, что электрон перепрыгнет от одного атома к соседнему, равны iA / (за единицу времени).

Изменим на время обозначения, и амплитуду < n |φ>, связанную с n -м атомом, обозначим через С n . Тогда (11.1) будет иметь вид

112 Если бы вы знали каждую из амплитуд С n в данный момент то взяв - фото 813(11.2)

Если бы вы знали каждую из амплитуд С n в данный момент, то, взяв квадраты их модулей, можно было бы получить вероятность того, что вы увидите электрон, взглянув в этот момент на атом n .

Но что сталось бы чуть позже? По аналогии с изученными нами системами с двумя состояниями мы предлагаем составить гамильтоновы уравнения для этой системы в виде уравнений такого типа:

113 Первый справа коэффициент Е 0физически означает энергию которую имел - фото 814(11.3)

Первый справа коэффициент Е 0физически означает энергию, которую имел бы электрон, если бы он не мог просачиваться от одного атома к другим. (Совершенно неважно, что мы назовем Е 0; мы неоднократно видели, что реально это не означает ничего, кроме выбора нуля энергии.) Следующий член представляет амплитуду в единицу времени того, что электрон из ( n +1)-й ямки просочится в n -ю ямку, а последний член означает амплитуду просачивания из ( n -1)-й ямки. Как обычно, А считается постоянным (не зависящим от t ).

Для полного описания поведения любого состояния |φ> надо для каждой из амплитуд С n иметь по одному уравнению типа (11.3). Поскольку мы намерены рассмотреть кристалл с очень большим количеством атомов, то допустим, что состояний имеется бесконечно много, атомы тянутся без конца в обе стороны. (При конечном числе атомов придется специально обращать внимание на то, что случается на концах.) А если количество N наших базисных состояний бесконечно велико, то и вся система наших гамильтоновых уравнений бесконечна! Мы напишем только часть ее:

114 2 Состояния определенной энергии Об электроне в решетке мы - фото 815(11.4)

§ 2. Состояния определенной энергии

Об электроне в решетке мы теперь уже можем узнать очень многое. Для начала попробуем отыскать состояния определенной энергии. Как мы видели в предыдущих главах, это означает, что надо отыскать такой случай, когда все амплитуды меняются с одной частотой, если только они вообще меняются. Мы ищем решение в виде

115 Комплексное число а n говорит нам о том какова не зависящая от - фото 816(11.5)

Комплексное число а n говорит нам о том, какова не зависящая от времени часть амплитуды того, что электроны будут обнаружены возле n -го атома. Если это пробное решение подставить для проверки в уравнения (11.4), то получим

116 Перед нами бесконечное число уравнений для бесконечного количества - фото 817(11.6)

Перед нами бесконечное число уравнений для бесконечного количества неизвестных а n ! Ситуация тяжелая!

Но мы знаем, что надо только взять детерминант... нет, погодите! Детерминанты хороши, когда уравнений два, три или четыре. Но здесь их очень много, даже бесконечно много, и вряд ли от детерминантов будет толк. Нет, лучше попробовать решать эти уравнения прямо. Во-первых, пронумеруем положения атомов; будем считать, что n -й атом находится в х n , а ( n +1)-й— в х n +1. Если расстояние между атомами равно b (как на фиг. 11.1), то х n +1= х n + b . Взяв начало координат в атоме номер нуль, можно даже получить х n = nb . Уравнение (11.5) можно тогда переписать в виде

117 а уравнение 116 превратится в 118 Пользуясь тем что x n - фото 818(11.7)

а уравнение (11.6) превратится в

118 Пользуясь тем что x n 1 x n b это выражение можно также - фото 819(11.8)

Пользуясь тем, что x n +1= x n + b , это выражение можно также записать в виде

119 Это уравнение немного походит на дифференциальное Оно говорит что - фото 820(11.9)

Это уравнение немного походит на дифференциальное. Оно говорит, что величина а ( х ) в точке х n связана с той же физической величиной в соседних точках х n ± b . (Дифференциальное уравнение связывает значения функции в точке с ее значениями в бесконечно близких точках.) Может быть, здесь подойдут методы, которыми мы обычно пользуемся для решения дифференциальных уравнений? Попробуем.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 3. Квантовая механика отзывы


Отзывы читателей о книге Том 3. Квантовая механика, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x