Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила

Тут можно читать онлайн Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Мир, год 1969. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Физика для любознательных. Том 1. Материя. Движение. Сила
  • Автор:
  • Жанр:
  • Издательство:
    Мир
  • Год:
    1969
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3.67/5. Голосов: 31
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила краткое содержание

Физика для любознательных. Том 1. Материя. Движение. Сила - описание и краткое содержание, автор Эрик Роджерс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

Физика для любознательных. Том 1. Материя. Движение. Сила - читать онлайн бесплатно полную версию (весь текст целиком)

Физика для любознательных. Том 1. Материя. Движение. Сила - читать книгу онлайн бесплатно, автор Эрик Роджерс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Внутреннее трение жидкости играет значительно меньшую роль, поэтому давление вдоль всей однородной трубки почти одинаково.

Фиг 236 При наличии в трубке узкого участка наблюдается изменение давления - фото 219

Фиг. 236. При наличии в трубке узкого участка наблюдается изменение давления.

Обратите внимание на изгиб выходной трубы для подъема воды в измерительных трубках на заметную высоту.

Если приложенное давление повышают, чтобы увеличить скорость потока, трение возрастает, но новый эффект возрастает еще больше. Поэтому при наличии более широких трубок и быстрого течения трением можно пренебречь и наблюдать новый эффект: изменение давления при изменении скорости течения в результате сужения или расширения трубки. Влияние трения можно также исключить (не совсем честным путем), если на каждом участке поставить только один измеритель давления (фиг. 237). При еще более быстром течении в узких участках давление падает ниже атмосферного и в трубку засасываются пузырьки воздуха (фиг. 237, б ).

Фиг 237 Чем быстрее течение тем больше изменение давления Задача 3 - фото 220

Фиг. 237. Чем быстрее течение, тем больше изменение давления.

Задача 3

Используя обнаруженный эффект, сконструируйте простое распылительное устройство.

Задача 4

На фиг. 238 показан прибор, который был изображен на фиг. 237, б , но в перевернутом виде, с боковой трубкой, погруженной в чернила. Что произойдет? Объясните.

Фиг 238 К задаче 4 Принцип Бернулли ключ к парадоксам Как показал опыт - фото 221

Фиг. 238. К задаче 4.

Принцип Бернулли — ключ к парадоксам

Как показал опыт, изображенный на фиг. 235–237, давление меньше там, где быстрее течение. Это положение называется принципом Бернулли .

От экспериментального наблюдения без дополнительных пояснений можно перейти к парадоксу «шарик в воронке». Посмотрим на линии тока, которые схематически изображены на фиг. 239.

Фиг 239 Линии тока воздуха обтекающего шарик в воронке В точке С где - фото 222

Фиг. 239. Линии тока воздуха, обтекающего шарик в воронке.

В точке С , где течение быстрее, давление меньше.

В области D , где поток воздуха выходит наружу, давление равно атмосферному. В узком зазоре С скорость потока выше, потому что то же количество воздуха должно пройти через более узкое пространство. Какое будет здесь давление — больше или меньше?

Теперь вам понятно, что удерживает шарик?

Принцип Бернулли и его объяснение

Принцип «где быстрее течение, там меньше давление» справедлив для ламинарного течения газа или жидкости. Он специфичен, но не столь непонятен, как это кажется. На самом деле его можно предсказать на основании известного уже вам второго закона Ньютона с помощью следующего рассуждения.

Выделим небольшой цилиндрический элемент жидкости, движущийся вдоль линий тока в области А (фиг. 240).

Фиг 240 Линии тока жидкости текущей по трубе В области В этот элемент - фото 223

Фиг. 240. Линии тока жидкости, текущей по трубе.

В области В этот элемент движется быстрее, и, следовательно, его количество движения возрастает. Движение ускоряется где-то между A и С , очевидно, в сужающейся шейке В . Но ускорение требует наличия силы, а в движущейся жидкости эта сила может быть создана только давлением окружающей жидкости. Это заставляет предположить, что давление в А должно быть выше, чем в В . Если бы во всех областях А, В и С давление было одинаковым, откуда могла бы в жидкости возникать ускоряющая сила? Элемент жидкости ничего не «знает» о внешнем мире и о существующих в нем силах, кроме давления окружающей жидкости. Итак, парадоксальный эффект Бернулли превращается в иллюстрацию второго закона Ньютона: для создания ускорения должна существовать разность давлений.

Чтобы представить себе это более ясно, вообразите крошечную подводную лодку в форме куба; увлекаемая жидкостью, она плывет в ламинарном потоке. Где течение быстрее, там лодка движется быстрее; ее движение, как и движение жидкости, должно ускоряться при переходе из широкой трубки А в более узкую С и замедляться при переходе из С в D (фиг. 241).

Фиг 241 Объяснение принципа Бернулли Ускорение должно быть вызвано - фото 224

Фиг. 241. Объяснение принципа Бернулли.

Ускорение должно быть вызвано разностью давлений. Давление на боковые стенки лодки не влияет на ее движение вперед, поэтому его можно не учитывать. Но давление на переднюю и заднюю стенки должно создавать равнодействующую при ускорении или замедлении движения. Поэтому, когда лодка ускоряется в В при переходе из А в С , сила, подталкивающая ее в корму, должна быть больше силы, оказывающей сопротивление носу. Давление на корму должно быть больше давления на нос. Корма лодки находится в области медленного течения А , а нос — в области быстрого течения С . Давление должно быть меньше там, где течение быстрее. Когда лодка переходит из С в D , давление на корму оказывается меньше давления на нос и движение замедлится.

Это несколько туманное рассуждение справедливо в рамках обсуждаемого вопроса — разность давлений вызывает ускоренное движение жидкости. Чтобы развить его дальше, следовало бы подробно обсудить вопрос об энергии. Пока мы будем применять принцип Бернулли в приведенной выше расплывчатой формулировке — при ламинарном течении давление меньше там, где быстрее течение . Он неприменим к вихревому или турбулентному течению. Даже при ламинарном течении этот принцип неприменим при перемещении от одной линии тока к другой, потому что ни один элемент не может двигаться поперек линий тока; однако, поскольку поперечных течений нет, большой разности давлений, вообще говоря, не возникает при переходе от одной линии тока к соседней.

Принцип Бернулли важен, но он не является тем фундаментальным законом физики, который всем необходимо знать. Он приведен здесь как пример необычного поведения, которое может быть «объяснено» на основе общих знаний без особых законов, придуманных специально для этой цели [145].

Примеры эффекта Бернулли

На фиг. 242, а струя воздуха обдувает открытый конец трубки, погруженной в жидкость. Воздух в области А движется быстрее, чем в области В , где он смешивается с атмосферным воздухом. Поэтому давление в А ниже атмосферного, и атмосферное давление в D может поднять жидкость по трубке, где она распыляется. На Фиг. 242, б показаны два шарика для пинг-понга, подвешенные на гибких проволочках недалеко один от другого. Струя воздуха между ними заставляет их сблизиться. На фиг. 242, в воздух по трубке АВ подается в отверстие в центре закрепленного диска С .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эрик Роджерс читать все книги автора по порядку

Эрик Роджерс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Физика для любознательных. Том 1. Материя. Движение. Сила отзывы


Отзывы читателей о книге Физика для любознательных. Том 1. Материя. Движение. Сила, автор: Эрик Роджерс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x