Тибо Дамур - Мир по Эйнштейну. От теории относительности до теории струн
- Название:Мир по Эйнштейну. От теории относительности до теории струн
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2016
- Город:Москва
- ISBN:978-5-9614-2389-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Тибо Дамур - Мир по Эйнштейну. От теории относительности до теории струн краткое содержание
Мир по Эйнштейну. От теории относительности до теории струн - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
97
Иными словами, возможно. Обратите внимание, что «возможно» не означает «вероятно», даже если в квантовой теории «все, что возможно, – обязательно», т. е. реализуется с некоторой амплитудой существования (обычно называемой амплитудой вероятности ), отличной от нуля. Весь опыт указывает на то, что доступная для нас часть пространства-времени находится в состоянии, предпочитающем особую временную ориентацию, что отражается во временном расслоении большого количества структур (космологических, астрофизических, электромагнитных, термодинамических…).
98
Не следует путать временную ориентацию (или стрелу времени ) с временным потоком . Например, блок желе, скажем, из-за оседания при охлаждении некоторых формирующих его компонентов, может быть расслоен , а именно может быть плотнее «внизу» и менее плотным «наверху» (с непрерывным изменением плотности снизу вверх). Такой блок желе будет иметь привилегированную пространственную ориентацию (снизу вверх). Но это «привилегированное направление» не означает, что что-то движется снизу вверх. Аналогично, наше пространство не является однородным, а скорее, расслоенным . Привилегированные слои обладают «пространственной ориентацией», т. е. расположены вдоль положительных квадратов интервала, но ничего не соответствует идее «слоя данного момента», который бы «перемещался» в направлении будущего, словно прожектор, освещающий последовательно «слои постоянной плотности» пространства-времени.
99
Здесь предполагается, что термодинамическая стрела времени (т. е. направление времени, в котором энтропия увеличивается) есть то, что определяет ощущение «течения времени» как результат необратимости процесса запоминания в нейронных структурах, связанных с феноменом сознания. В космологической модели рассматриваемого типа термодинамическая стрела времени не будет определена в некоторых областях переходов, где энтропия переходит максимумы. Для недавнего обсуждения различных (математических, физических, философских…) аспектов Времени см. семинар Пуанкаре от 4 и 18 декабря 2010 г. ( www.bourbaphy.fr).
100
Здесь анализируется деформация «пространственной геометрии», т. е. геометрии пространственно-временного слоя, рассматриваемого в данный момент времени.
101
Для введения в исследования режима сильных гравитационных полей, полученных на основании наблюдений бинарных пульсаров, см. раздел 6.9 главы 6 «Общая теория относительности» в недавно вышедшем сборнике «Эйнштейн сегодня» (см. Избранную библиографию).
102
Мы предполагаем здесь, что типичные особенности пространства-времени локально похожи на космологическую сингулярность (т. е. распространяются либо вдоль «пространственнообразной» гиперповерхности, либо строго вдоль «светообразной» гиперповерхности). Эта (упрощенная) гипотеза подтверждается некоторыми результатами, но, по сути, в рамках неквантовой общей теории относительности остается недоказанным предположением.
103
Для введения в астрофизику черных дыр и их истории см.: Жан-Пьер Люмине. Черные дыры (Jean-Pierre Luminet, Les Trous noirs , Paris, Éditions du Seuil, 1992); Жан Эйзенштадт. Эйнштейн и общая теория относительности (Jean Eisenstaedt, Einstein et la relativité générale , Paris, CNRS Éditions, 2002); Вернер Израиль. Темные звезды: эволюция идеи (Werner Israel, Dark Stars: The Evolution of an Idea, dans 300 Years of Gravitation , édité par S. W. Hawking et W. Israel, Cambridge, Cambridge University Press, 1987).
104
Математически представленная на этой диаграмме хроногеометрия (за пределами коллапсирующей звезды) есть хроногеометрия черной дыры Шварцшильда, что соответствует решению уравнений Эйнштейна, полученному Карлом Шварцшильдом и Йоханнесом Дростом в 1916 г. Для тех, кому интересно, вот математическая форма инфинитезимального квадрата интервала этой хроногеометрии: ds ² = − Aс ² dt ² + dr ² /А + r ² ( da ² + (sin a )² ( db )²), где r – радиальная координата, A = 1 − 2 GM / ( c ² r ) и где a обозначает широту (рассчитанную от северного полюса), а b – долготу на сфере направлений. [Эти углы обычно обозначаются греческими буквами theta и phi , однако из-за серьезных (связанных с системой обработки текстов) проблем совместимости компьютеров, которые одному американскому компьютерному магнату удалось создать для многих, в том числе для французских издателей, мы стараемся свести к минимуму использование греческих букв.] Горизонт черной дыры Шварцшильда (вне звезды) является «цилиндром», имеющим «радиус» r = 2 GM/c 2.
105
Энергия, импульс и момент импульса изолированной черной дыры определяются формализмом, введенным Ричардом Арновиттом, Стэнли Дезером и Чарльзом Миснером.
106
В работе, датируемой 1971 г., в которой они показали существование фундаментальной необратимости в физике черных дыр.
107
Понятие энтропии черной дыры было введено Яковом Бекенштейном в 1973 г.
108
Понятие температуры черной дыры было введено Стивеном Хокингом в 1974 г. в расчете, где он обнаружил замечательное явление «квантового испарения» черной дыры.
109
Понятие поверхностного сопротивления черной дыры было введено независимо Тибо Дамуром и Романом Знаеком в 1978 г.
110
Понятие поверхностной вязкости черной дыры было введено Тибо Дамуром в 1979 г.
111
Данные здесь объяснения в отношении Эрнеста Сольве и первого Сольвеевского конгресса в значительной степени взяты из книги под редакцией Пьера Мараге и Грегуара Валленборна «Сольвеевские конгрессы и начала современной физики» (Pierre Marage et Grégoire Wallenborn (éditeurs), Les Conseils Solvay et les débuts de la physique moderne , Université libre de Bruxelles, 1995).
112
Международный Сольвеевский институт в Брюсселе и сегодня с большим успехом продолжает эту традицию при непрекращающийся поддержке семьи Сольве.
113
В особенности Густав Кирхгоф, Джозеф Стефан, Людвиг Больцман, Вильгельм Вин, Фридрих Пашен, Макс Планк, Отто Луммер, Эрнст Прингсгейм, Генрих Рубенс и Фердинанд Курльбаум.
114
Этот закон обычно называют «законом Рэлея – Джинса». На самом деле, как отметил Авраам Пейс в своей книге об Эйнштейне (см.: Избранную библиографию), закон нужно было бы называть «законом Рэлея – Эйнштейна – Джинса», поскольку Эйнштейн был первым, кто дал полный вывод этого закона и понял весь его смысл. Оригинальная работа лорда Рэлея (1900 г.) не содержала вывода общего множителя, возникающего в законе.
115
На практике используется не логарифм с основанием 10, а «натуральный» логарифм с основанием e = 2,71828, т. е. N = eL .
Читать дальшеИнтервал:
Закладка: