Николя Жизан - Квантовая случайность. Нелокальность, телепортация и другие квантовые чудеса
- Название:Квантовая случайность. Нелокальность, телепортация и другие квантовые чудеса
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2016
- Город:Москва
- ISBN:978-5-9614-2389-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Николя Жизан - Квантовая случайность. Нелокальность, телепортация и другие квантовые чудеса краткое содержание
Квантовая случайность. Нелокальность, телепортация и другие квантовые чудеса - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
До сих пор мы считали, что ящики Алисы и Боба содержат предустановленные программы, которые определяют результаты как следствие выбора x и y . (В информатике x и y называются входными данными). Но что будет, если эти программы не полностью определяют результат, но оставляют некоторое место случаю? Представим себе, например, что время от времени прибор Алисы случайно выбирает, исполнять ли ему программу № 1 или программу № 3, или же он время от времени просто выдает случайный результат. Можно ли это помочь им выиграть в игру Белла?
Нужно отметить, что выдать случайный результат – это, в сущности, то же самое, что осуществить случайный выбор между программой № 1 (которая выдает a = 0) и программой № 2 (которая выдает a = 1). Оказывается, эта стратегия бесполезна. Игра Белла подразумевает большое количество повторений и расчетов средних значений. Если в данную минуту прибор Алисы случайно выбирает одну программу из некоторого набора программ, то счет игры не будет отличаться от того, что мы получили бы, если бы ящик в каждую минуту использовал одну конкретную программу, выбранную случайным образом из этого набора. Учитывая, что в каждую минуту ящики используют одну специфическую программу, это не является ограничением. Введение случайных стратегий никак не поможет Алисе и Бобу выиграть игру Белла; на самом деле наоборот. Как мы уже видели, если приборы Алисы и Боба независимо производят случайные результаты, они получают только 2 очка.
Подводя итог, скажем, что никакая локальная стратегия не поможет выиграть в игру Белла более чем три раза из четырех. Как сказал бы физик, никакая локальная корреляция не может нарушить неравенство Белла. Другими словами, если бы Алиса и Боб все же сумели выиграть более часто, чем три раза из четырех, этому явлению не было бы локального объяснения.
Как мы уже знаем, существует только два типа локальных объяснений: первый основан на непрерывном распространении воздействия от одной точки к другой через пространство, а второй основан на существовании общей причины, что также подразумевает непрерывное распространение воздействия в пространстве из некоего общего момента в прошлом. В нашем случае объяснения первого типа исключаются огромным расстоянием между Алисой и Бобом и, как мы только что видели, объяснение второго типа не позволяет выиграть в игру Белла более чем три раза из четырех.
Победить в игре Белла: нелокальные корреляции
Теперь представим, что Алиса и Боб играют очень давно и выигрывают в среднем гораздо чаще, чем три раза из четырех. Как раз это и становится возможным благодаря явлению запутанности в квантовой физике. Но пока мы отложим этот поразительный раздел физики в сторону и просто рассмотрим гипотезу о том, что Алиса и Боб выигрывают очень часто.
Мы уже исключили возможность их влияния друг на друга или какой-либо связи между их приборами даже посредством каких-либо еще не открытых волн (к этой важной гипотезе мы вернемся позже). Мы только что видели, что если приборы производят результат локально в зависимости от времени и положения джойстика, а значит, в зависимости от выбора оператора, то выиграть более, чем три раза из четырех невозможно. Другими словами, невозможно выиграть более, чем три раза из четырех, если пользоваться локальными стратегиями, что означает использование механизма последовательного распространения от точки к точке сквозь пространство.
Именно поэтому корреляции, которые позволяют выигрывать в игру Белла чаще, чем три раза из четырех, называют нелокальными. Но как Алиса и Боб могут сделать это со своими ящиками?
Если бы мы спросили об этом физика до открытия квантового мира, скажем до 1925 года, ответ был бы очень прост. Он сказал бы, что это совершенно невозможно. Чтобы выигрывать чаще, чем три раза из четырех, Алиса и Боб, или по крайней мере их приборы, должны были бы каким-то образом хитрить. Либо иметь возможность обмениваться информацией, либо оказывать влияние друг на друга, пусть даже неосознанно, как, зевнув сам, заставляешь зевать окружающих. Но если исключить всякую связь, для физика доквантовой эпохи такой результат был бы невозможен.
А вы? Вы понимаете, как выиграть больше, чем три раза из четырех? Вы верите, что это возможно? Сожалею, что приходится терзать ваше серое вещество этой игрой, но она действительно выражает суть нелокальности. Сейчас мы похожи на средневековых людей, которым сказали, что Земля круглая, как шар, и где-то на противоположной его стороне тоже живут люди. Как же они тогда с нее не падают? Сегодня каждый знает, что все предметы, включая людей, падают к центру Земли, а не просто сверху вниз. И люди на другой стороне планеты притягиваются к ней так же, как магниты к дверце холодильника. Благодаря магнитам мы можем себе представить, как Земля притягивает нас, так что ни австралийцы, ни европейцы не сорвутся.
Но как быть с игрой Белла? Где для нее аналог магнитов на холодильнике? Какая история могла бы объяснить это? К сожалению, я не могу дать вам интуитивно понятное объяснение того, как именно квантовая запутанность позволяет выигрывать чаще, чем три раза из четырех. Но я могу пригласить вас продолжить путешествие в мир атомов и фотонов, поиграть в эту странную игру и посмотреть, что интересного или даже полезного может из этого получиться. Давайте посмотрим, что это значит для нашей картины мироздания. Давайте разберем эти корреляции, так же как ребенок разбирает игрушку, чтобы посмотреть что у нее внутри.
Справка 4. Джон Белл: «Я квантовый инженер, но по воскресеньям у меня есть принципы».По счастью, я довольно часто встречал Джона Белла. Вот история одной из наших первых встреч.
«Я квантовый инженер, но по воскресеньям у меня есть принципы», – так начал разговор Белл во время нашей довольно необычной встречи в марте 1983 года. Я никогда не забуду эти слова! Джон Белл, знаменитый Джон Белл, представился инженером, то есть одним из тех практиков, которые знают, как заставить вещи работать. А для меня, недавно получившего докторскую степень в области теоретической физики, Джон Белл был гигантом среди теоретиков.
В 1983 году общество физических исследований кантона Во организовало ежегодную тренинг-сессию. На неделю в Монтане собрались преподаватели и физики-исследователи, посвящавшие половину времени катанию на лыжах, а вторую половину – лекциям известных ученых. В том году главной темой были основы квантовой физики, и это означало возможность встретиться с Аленом Аспе, первым человеком [14] Американский физик Джон Клаузер (John Clauser) получил подобный результат несколькими годами ранее, но его ящики не исключали возможности обмена информацией. Более того, они выдавали только один результат, к примеру 0, а другой результат – 1 – получался посредством косвенных измерений.
, который одержал победу в игре Белла, и несколько вечеров кататься с ним на лыжах. Джон Белл был в числе приглашенных, потому что не сделать этого было невозможно, но он не был заявлен в программе лекций, по особым для этой части научного сообщества причинам, что, очевидно, было страшной глупостью. Мы с другом попросили Белла устроить для нас импровизированное выступление. Сначала он отказывался, ссылаясь на то, что он не привез свои слайды, но в конце концов однажды вечером после ужина этот нелегальный экспромт состоялся – в подвале, на скорую руку оборудованном под лекционный зал, где слушатели разместились на полу. Инженер с принципами рассказывал нам о практическом применении физики в разработке приложений, в сложных или занятных экспериментах, а также для того, чтобы выявить эмпирические правила, которые прекрасно работают на практике. И еще рассказал о том, что нельзя упускать из вида главную цель научного познания: дать систематическое объяснение природы. С тех пор эта мысль всегда со мной.
Интервал:
Закладка: