Роджер Пенроуз - Новый ум короля: О компьютерах, мышлении и законах физики
- Название:Новый ум короля: О компьютерах, мышлении и законах физики
- Автор:
- Жанр:
- Издательство:Едиториал УРСС
- Год:2003
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Роджер Пенроуз - Новый ум короля: О компьютерах, мышлении и законах физики краткое содержание
Монография известного физика и математика Роджера Пенроуза посвящена изучению проблемы искусственного интеллекта на основе всестороннего анализа достижений современных наук. Возможно ли моделирование разума? Чтобы найти ответ на этот вопрос, Пенроуз обсуждает широчайший круг явлений: алгоритмизацию математического мышления, машины Тьюринга, теорию сложности, теорему Геделя, телепортацию материи, парадоксы квантовой физики, энтропию, рождение Вселенной, черные дыры, строение мозга и многое другое.
Книга вызовет несомненный интерес как у специалистов гуманитарных и естественнонаучных дисциплин, так и у широкого круга читателей.[1]
Новый ум короля: О компьютерах, мышлении и законах физики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Но в состояниях на квантовом уровне , которые, казалось бы, лежат в основе всего, никакой «реальности» он не усматривал.
Такая картина была неприемлема для Эйнштейна, который был глубоко убежден в том, что объективный физический мир должен действительно существовать, даже на микроскопических масштабах квантовых явлений. В своих многочисленных дискуссиях с Бором Эйнштейн пытался (но неудачно) показать, что квантовой картине присущи внутренние противоречия, и что за квантовой теорией должна стоять какая-то более глубокая структура, возможно, более похожая на картины классической физики. Возможно, вероятностное поведение квантовых систем является проявлением статистических эффектов более малых компонентов, или частей, системы, о которых мы не располагаем непосредственным знанием. Последователи Эйнштейна, в особенности Давид Бом, развили высказанную им идею о «скрытых переменных», согласно которой должна существовать некоторая вполне определенная реальность, но параметры, точно определяющие систему, не доступны нам непосредственно, и квантовые вероятности возникают из-за того, что значения этих параметров неизвестны до измерения.
Согласуется ли теория скрытых переменных со всеми наблюдаемыми фактами квантовой физики? Похоже, что ответ на этот вопрос должен быть утвердительным, но только если эта теория по существу нелокальна в том смысле, что скрытые параметры должны иметь возможность мгновенно влиять на элементы системы в сколь угодно далеких областях! Такая ситуация не понравилась бы Эйнштейну, особенно в связи с возникающими трудностями в специальной теории относительности. К ним я еще вернусь в дальнейшем. Наиболее успешная теория скрытых переменных известна как модель де Бройля (де Бройль [1956], Бом [1952]). Я не буду обсуждать здесь эти модели, так как в этой главе моя цель состоит только в том, чтобы дать общий обзор стандартной квантовой теории, а не различных соперничающих с ней положений. Если кто-нибудь жаждет физической реальности, но готов пожертвовать детерминизмом, то самой стандартной теории вполне достаточно. Он просто рассматривает вектор состояния как описывающий «реальность» — обычно изменяющийся во времени в соответствии с гладкой детерминистской U- процедурой , но время от времени совершающий причудливые «прыжки» в соответствии с R- процедурой всякий раз, когда эффект увеличивается до классического уровня. Но проблема нелокальности и явных трудностей с относительностью сохраняются. Рассмотрим некоторые из них.
Предположим, что у нас имеется физическая система, состоящая из двух подсистем Аи В. Пусть, например, Аи В— две различные частицы. Предположим, что для состояния частицы А существуют две (ортогональные) альтернативы | α ) и | ρ ), а для состояния частицы В— две (ортогональные) альтернативы | β ) и | σ ). Как мы уже видели выше, общее комбинированное состояние системы будет не просто произведением (конъюнкцией « и») некоторого состояния частицы Аи некоторого состояния частицы В, а суперпозицией («плюс») таких произведений. (Тогда мы говорим, что Аи Вкоррелированы.) Пусть состояние системы представимо суперпозицией
| α )| β ) + | ρ )| σ ).
Произведем измерение типа «да или нет» над частицей А, которое отличает состояние | α ) ( ДА) от состояния | ρ ) ( НЕТ). Что произойдет при этом с частицей B ? Если измерение даст ответ ДА, то результирующим должно быть состояние
| α )| β ),
а если измерение даст ответ НЕТ, то
| ρ )| σ )
Таким образом, измерение, производимое нами над частицей А, заставляет состояние частицы Визмениться скачком: перейти в | β ), если получен ответ ДА, и перейти в | σ ), если получен ответ НЕТ! Частица Вне обязательно должна находиться поблизости от частицы А; частицы могут быть разделены расстоянием в несколько световых лет. И все же частица Вскачком переходит из одного состояния в другое одновременно с измерением, производимым над частицей А!
«Но постойте», — вполне может сказать читатель. К чему все эти подозрительные «скачки»? Почему не происходит просто следующее: представьте себе ящик, о котором известно, что в нем лежит один черный и один белый шар. Предположим, что некто извлек шары из ящика и, не глядя, отнес их в противоположные углы комнаты. Затем он взглянул на один шар и обнаружил, что он белый (аналог упоминавшегося выше состояния | α )), тогда — алле-оп! — другой шар оказывается черным (аналог состояния | β ))! С другой стороны, если первый шар оказался черным (аналог состояния | ρ )), то в мгновение ока состояние второго шара скачком переходит в «заведомо белый» (аналог состояния | σ )). Никто из читателей или читательниц в здравом уме не станет упорно приписывать внезапный переход второго шара из состояния «неопределенности» в состояние «определенно черный» или «определенно белый» некоторому таинственному нелокальному «влиянию», мгновенно доходящему до него от первого шара в тот самый момент, когда наблюдатель рассмотрел первый шар.
Но природа действует еще более изощренно. Действительно, в приведенном выше примере можно было бы представить, что система уже «знала», что частица Внаходилась в состоянии | β ), а частица А— в состоянии | α ) (или что частица Внаходилась в состоянии | σ ), а частица А— в состоянии | ρ )) до того, как над Абыло произведено измерение; и только экспериментатору состояния частиц не были известны. Обнаружив, что частица Анаходится в состоянии | α ), он просто заключил , что частица Внаходится в состоянии | β ). Такая точка зрения была бы «классической» — как в локальной теории скрытых переменных — и никаких скачкообразных физических переходов из одного состояния в другое в действительности не происходит. (Все это происходит лишь в уме экспериментатора!) Согласно такой точке зрения любая часть системы заранее «знает» результаты любого эксперимента, который мог бы быть произведен над ней. Вероятности возникают только из-за отсутствия такого знания у экспериментатора. Достойно удивления, что, как оказывается, эта точка зрения не срабатывает для объяснения всех загадочных нелокальных вероятностей, возникающих в квантовой теории!
Читать дальшеИнтервал:
Закладка: