Ричард Фейнман - 8a. Квантовая механика I
- Название:8a. Квантовая механика I
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 8a. Квантовая механика I краткое содержание
8a. Квантовая механика I - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Всякое состояние может быть представлено линейной комбинацией |1 > и |2 >(с коэффициентами С 1и С 2) или линейной комбинацией базисных состояний с определенной энергией | I > и | II > (с коэффициентами С I и С II ) . Итак,
| Ф >=|1>С 1 +|2>С 2 , или
|Ф>=| I > С I +| II > С II .
Вторая формула дает нам амплитуды обнаружить состояние |Ф> в состоянии с энергией Е I =Е 0 +А или в состоянии с энергией Е II =Е 0 -А.
§ 2. Молекула в статическом электрическом поле
Если молекула аммиака находится в любом из двух состояний определенной энергии, а мы приложим к ней возмущение с частотой w, такой, что hw= E I - Е П =2А, то система может перейти из нижнего состояния в верхнее. Или она может перейти из верхнего в нижнее и испустить фотон. Но для возбуждения таких переходов у вас должна быть физическая связь с состояниями — возможность возмущать систему. Должен существовать какой-то внешний механизм влияния на состояния, нечто вроде электрического или магнитного поля. В нашем частном случае эти состояния чувствительны к электрическому полю. На очереди, стало быть, у нас теперь проблема поведения молекулы аммиака во внешнем электрическом поле.
Для разбора этого поведения вернемся опять к первоначальной базисной системе |1> и |2> вместо | I > и | II >. Предположим, что имеется электрическое поле, направленное поперек плоскости атомов водорода. Пренебрежем на мгновение возможностью переброса атома азота вверх или вниз и зададим вопрос: верно ли, что энергия, этой молекулы в обоих положениях атома азота будет одинаковой? Вообще говоря, нет. Электроны стремятся к тому, чтобы находиться ближе к ядру азота, чем к ядрам водорода, так что водороды оказываются слегка положительно заряженными. Насколько — это зависит от деталей расположения электронов. Каково это распределение, точно представить очень трудно, но, во всяком случае, окончательный результат состоит в том, что у молекулы аммиака есть электрический дипольный момент, как показано на фиг.7.1. С его помощью можно продолжить дальнейший анализ, не интересуясь деталями направлений или величин смещений зарядов. Впрочем, чтобы наши обозначения не отличались от общепринятых, предположим, что электрический дипольный момент равен m и направлен от атома азота поперек плоскости атомов водорода.
Далее, когда азот перепрыгивает с одной стороны на другую, то центр масс не перемещается, а электрический дипольный момент переворачивается. В результате энергия в электрическом поле x будет зависеть от ориентации молекулы. При сделанном только что допущении потенциальная энергия будет выше тогда, когда атом азота будет удален от плоскости водородов в направлении поля, и ниже, когда он удален в обратную сторону; промежуток между обеими энергиями будет равен 2mx .
До этого места мы вынуждены были делать предположения о том, чему равны Е 0и А, не зная, как подсчитать их. В соответствии со строгой физической теорией обязана существовать возможность вычисления этих констант, если известны положения и движения всех ядер и электронов. Но никто никогда не делал этого. В систему входит десяток электронов и четверка ядер, и задача чересчур сложна. Факт остается фактом: о молекуле этой никто не знает больше того, что знаем мы с вами. И все, что всякий может о ней сказать,— что в электрическом поле энергия двух состояний отличается и разность энергий пропорциональна электрическому полю. Коэффициент пропорциональности мы обозначили 2m, но его величина должна определяться экспериментально. Можно еще сказать, что молекула имеет амплитуду А перевернуться, но и она должна измеряться экспериментально. Никто не укажет нам точных теоретических значений m и А , потому что расчеты уж слишком сложны, чтобы честно их проделать.
Для молекулы аммиака в электрическом поле наше описание придется изменить. Если игнорировать амплитуду переброса молекулы из одной конфигурации в другую, то энергии двух состояний |1> и | 2 >обязаны быть равны (Е 0±mx) . Следуя процедуре, принятой в предыдущей главе, мы примем
Кроме того, предположим, что при интересующих нас электрических полях сами поля не сказываются заметно на геометрии молекулы и, стало быть, на амплитуде того, что атом азота перепрыгнет из одного положения в другое.
Поэтому можно принять, что Н 12и H 21не изменились, т. е.
H 12= H 21=- А. (7.15)
Теперь с этими новыми значениями Н ij надо решать гамильтоновы уравнения (6.43). Мы могли бы их решить просто, как делали это прежде, но поскольку нам не раз, видимо, представится случай решать системы с двумя состояниями, то давайте уж решим их раз и навсегда в общем случае произвольного Н ij , считая только, что со временем оно не меняется.
Мы ищем общее решение пары гамильтоновых уравнений
Это линейные дифференциальные уравнения с постоянными коэффициентами. Значит, всегда можно найти решения, являющиеся экспоненциальными функциями независимой переменной t. Сперва отыщем решения, в которых С 1и С 2одинаково зависят от времени; возьмем пробные функции
Поскольку это решение отвечает состоянию с энергией E=hw ,
то можно прямо написать
где Е пока неизвестна и должна быть определена так, чтобы дифференциальные уравнения (7.16) и (7.17) выполнялись. При подстановке С 1 и С 2из (7.18) и (7.19) в дифференциальные уравнения (7.16) и (7.17) производные дают просто - iE/h, умноженное на С 1или C 2, так что слева остается попросту ЕС 1или ЕС 2 . Сокращая общие экспоненциальные множители, получаем
или после перестановки членов
Интервал:
Закладка: