Ричард Фейнман - 7. Физика сплошных сред

Тут можно читать онлайн Ричард Фейнман - 7. Физика сплошных сред - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    7. Физика сплошных сред
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.3/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 7. Физика сплошных сред краткое содержание

7. Физика сплошных сред - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

7. Физика сплошных сред - читать онлайн бесплатно полную версию (весь текст целиком)

7. Физика сплошных сред - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Для материала с чисто мнимым показателем преломления по­лучается стопроцентное отражение!

Металлы не отражают 100% света, но все же многие из них хорошо отражают видимый свет. Другими словами, мнимая часть их показателя очень велика. Однако мы видели, что боль­шая мнимая часть показателя означает сильное поглощение. Итак, имеется общее правило: если какой-то материал оказы­вается очень хорошим поглотителем при какой-то частоте, то отражение волн от его поверхности очень велико и очень мало волн попадает внутрь. Этот эффект вы можете наблюдать на сильных красителях. Чистые кристаллы самых сильных кра­сителей имеют «металлический» блеск. Вероятно, вы замечали, что на краях бутылки с фиолетовыми чернилами засохший краситель имеет золотистый металлический блеск, а засохшие красные чернила имеют иногда зеленоватый металлический оттенок. Красные чернила поглощают из проходящего света зеленые лучи, так что, если концентрация чернил очень велика, они будут давать сильное поверхностное отражение при частоте зеленого света.

Вы можете очень эффектно продемонстрировать это. Намажь­те стеклянную пластинку красными чернилами и дайте им вы­сохнуть. Если вы направите пучок белого света на обратную сторону пластинки (фиг. 33.8), то сможете наблюдать проходя­щий красный свет и отраженный зеленый свет.

Фиг 338 Материал который сильно поглощает свет с частотой w отражает его - фото 155

Фиг. 33.8. Материал, кото­рый сильно поглощает свет с частотой w , отражает его с той же частотой.

§ 6. Полное внутреннее отражение

Если свет идет из материала, подобного стеклу, с веществен­ным показателем преломления n, большим единицы, в воздух с показателем n 2, равным единице, то, согласно закону Снелла,

sinq t= n sinq i.

Угол q tпреломленной волны становится равным 90° при угле падения q i равном некоторому «критическому углу» q c, опре­деляемому равенством nsinq c= l. (33.59)

Что происходит при q i, большем, чем критический угол? Вы уже знаете, что здесь возникает полное внутреннее отражение. Но откуда оно все-таки берется?

Вернемся назад к уравнению (33.45), которое дает волновое число k" x для преломленной волны. Из него получилось

7 Физика сплошных сред - изображение 156

Но так как k y =k sinq i, a k =wn/с, то

Если n sinq iбольше единицы то k 2 хстановится отрицательным a k x чисто - фото 157

Если n sinq iбольше единицы, то k" 2 хстановится отрицатель­ным, a k" x чисто мнимым, скажем ±ik. Однако теперь вы знаете, что это значит! «Прелом­ленная» волна при этом будет иметь вид [см. (33.34)]

т е с увеличением х амплитуда волны будет либо экспоненциально расти либо - фото 158

т. е. с увеличением х амплитуда волны будет либо экспоненци­ально расти, либо падать, но сейчас, разумеется, нам нужен только отрицательный знак. При этом амплитуда волны справа от границы будет вести себя, как показано на фиг. 33.9.

Фиг ЗЗ9 Полное внутреннее отражение Обратите внимание что k 1 по - фото 159

Фиг. ЗЗ.9. Полное внутреннее отражение.

Обратите внимание, что k 1 по порядку величины равно а/с, т. е. l 0равна длине волны света в пустоте. Когда свет пол­ностью отражается от внутренней поверхности стекло — воз­дух, то в воздухе возникают поля, но они не выходят за пределы расстояний, равных по порядку величины длине волны света.

Теперь нам ясно, как нужно отвечать на такой вопрос: если световая волна в стекле падает на поверхность под достаточно большим углом, то она полностью отражается; если же придви­нуть к поверхности другой кусок стекла (так что «поверхность» фактически исчезает), то свет будет проходить. В какой точно момент происходит этот переход? Ведь наверняка должен суще­ствовать непрерывный переход от полного отражения к полному его отсутствию! Ответ, разумеется, состоит в том, что если про­слойка воздуха настолько мала, что экспоненциальный «хвост» волны в воздухе имеет еще ощутимую величину во втором куске стекла, то он будет «трясти» электроны и порождать новую волну (фиг. 33.10).

Фиг 3310 Для очень маленькой щели внутреннее отражение не будет полным - фото 160

Фиг. 33.10. Для очень маленькой щели внутреннее отражение не будет «пол­ным», за щелью появляется прошедшая волна.

Некоторое количество света будет проходить через систему. (Конечно, наше решение неполно; нам следовало бы заново решить все уравнения для случая тонкого слоя воздуха между двумя областями стекла.)

Для обычного света этот эффект прохождения можно наб­людать, только если щель очень мала (порядка длины волны, т. е. 10 - 5 см), но для 3-сантиметровых волн он демонстрируется очень легко. Для таких волн экспоненциально затухающие поля распространяются на расстояние нескольких сантиметров.

Микроволновая аппаратура, с помощью которой демонстрируют этот эффект, изображена на фиг. 33.11.

Фиг 3311 Проникновение волн внутреннего отражения Волны из маленького - фото 161

Фиг. 33.11. Проникновение волн внутреннего отражения.

Волны из маленького передатчика 3-сантиметровых волн направляются на парафи­новую призму, имеющую сечение в форме равнобедренного пря­моугольного треугольника. Показатель преломления парафина для этих частот равен 1,50, поэтому критический угол будет 41,5°. Таким образом, волны полностью отражаются от поверх­ности, наклоненной под 45°, и принимаются детектором А (фиг.33.11, а). Если к первой призме плотно приложить вторую парафиновую призму (фиг. 33.11, б), то волны проходят прямо сквозь них и регистрируются детектором В. Если же между призмами оставить щель в несколько сантиметров (фиг.33.11, в), то мы получим как отраженную, так и проходящую волны. Поместив детектор В в нескольких сантиметрах от наклоненной под 45° поверхности призмы, можно увидеть и электрическое поле вблизи нее.

Глава 34

МАГНЕТИЗМ ВЕЩЕСТВА

§ 1. Диамагнетизм и парамагнетизм

§ 2. Магнитные моменты и момент количества движения

§ 3. Прецессия атомных магнитиков

§ 4. Диамагнетизм

§ 5. Теорема Лармора

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




7. Физика сплошных сред отзывы


Отзывы читателей о книге 7. Физика сплошных сред, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x