Ричард Фейнман - 7. Физика сплошных сред

Тут можно читать онлайн Ричард Фейнман - 7. Физика сплошных сред - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    7. Физика сплошных сред
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.3/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 7. Физика сплошных сред краткое содержание

7. Физика сплошных сред - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

7. Физика сплошных сред - читать онлайн бесплатно полную версию (весь текст целиком)

7. Физика сплошных сред - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

H= В- M/(e 0c 2). (36.12)

После этого уравнение (36.11) принимает вид

e 0c 2 СX H= j np ов+ д D/ д t. (36.13)

Выглядит оно просто, но вся его сложность теперь скрыта в буквах Dи Н.

Хочу предостеречь вас. Большинство людей, которые при­меняют систему СИ, пользуются другим определением Н. На­зывая свое поле через Н'(они, конечно, не пишут штриха), они определяют его как

Н'=e 0с 2 В- М. (36.14)

(Кроме того, величину e 0с 2они обычно записывают в виде l/m 0, так что появляется еще одна постоянная, за которой все время нужно следить!) При таком определении уравнение (36.13) будет выглядеть еще проще:

СX H' = j npo в+ д D/ д t. (36.15)

Но трудность здесь заключается в том, что такое определение, во-первых, не согласуется с определением, принятым теми, кто не пользуется системой СИ, и, во-вторых, поля Н'и Визме­ряются в различных единицах. Я думаю, что Нудобнее изме­рять в тех же единицах, что и В, а не в единицах М, как Н'. Но если вы собираетесь стать инженером и проектировать транс­форматоры, магниты и т. п., то будьте внимательны. Вы столк­нетесь со множеством книг, где в качестве определения Ниспользуется уравнение (36.14), а не (36.12), а в других книгах, особенно в справочниках о магнитных материалах, связь между Ви Нтакая же, как и у нас. Нужно быть внимательным и по­нимать, какое где использовано соглашение.

Одна из примет, указывающих нам на соглашение,— это единицы измерения. Напомним, что в системе СИ величина В, а следовательно, и наше Низмеряются в единицах вб/м 2 (1 вб/м 2 =10 000 гс). Магнитный же момент (т. е. произведение тока на площадь) в той же системе СИ измеряется в единицах а · м 2 . Тогда намагниченность Мимеет размерность а/м. Размерность Н'та же, что и размерность М. Нетрудно видеть, что это согла­суется с уравнением (36.15), поскольку у имеет размерность обратной длины.

Те, кто работает с электромагнитами, привыкли измерять поле Н(определенное как Н') в ампер-витках/метр, имея при этом в виду витки провода в обмотке. Но «виток» ведь фактически величина безразмерная, и она не должна вас смущать. Посколь­ку наше Н равно H'/e 0 c 2 , то, если вы пользуетесь системой СИ, Нвб/м) равно произведению 4p·10 -7на Н'(в а/м). Может быть, более удобно помнить, что Нгс) равно 0,0126 H 'а/м).

Здесь есть еще одна ужасная вещь. Многие люди, исполь­зующие наше определение Н, решили назвать единицы измере­ния Ни В по-разному! И даже несмотря на одинаковую размер­ность, они называют единицу В гауссом, а единицу Нэрсте­дом (конечно, в честь Гаусса и Эрстеда). Таким образом, во многих книгах вы найдете графики зависимости В в гауссах от Нв эрстедах. На самом деле это одна и та же единица, равная 10 -4единиц СИ. Эту неразбериху в магнитных единицах мы увековечили в табл. 36.1.

Таблица 36.1 · ЕДИНИЦЫ МАГНИТНЫХ ВЕЛИЧИН

3 Кривая намагничивания Рассмотрим теперь некоторые простые случаи когда - фото 229

§ 3. Кривая намагничивания

Рассмотрим теперь некоторые простые случаи, когда маг­нитное поле остается постоянным или изменения поля настолько медленны, что можно пренебречь d D /dt по сравнению с j npo в. В этом случае поля подчиняются уравнениям

СX B=0, (36.16)

СX H=j пров/e 0c 2, (36.17)

H= B- M/e 0c 2. (36.18)

Предположим, что у нас есть железный тор с намотанной на него медной проволокой, как это показано на фиг. 36.7, а.

Фиг 367 Железный тор обмотанный витками изолированного провода а и его - фото 230

Фиг. 36.7. Железный тор, обмотанный витками изолированного провода (а), и его поперечное сечение (б). Показаны силовые линии.

Пусть по проводу течет ток I. Каково при этом магнитное поле? Оно будет сосредоточено главным образом внутри железа, причем там (см. фиг. 36.7, б) силовые линии должны быть круговыми. Вследствие постоянства потока В его дивергенция равна нулю, и уравнение (36.16) удовлетворяется автоматически. Запишем затем уравнение (36.17) в другой форме, проинтегрировав его по замкнутому контуру Г, показанному на фиг. 36.7, б. Из теоремы Стокса мы получаем

где интеграл от jберется по поверхности S ограниченной контуром Г Каждый - фото 231

где интеграл от jберется по поверхности S, ограниченной кон­туром Г. Каждый виток обмотки пересекает эту поверхность один раз, поэтому каждый виток дает в интеграл вклад, равный I , а пос­кольку всего витков N штук, то интеграл будет равен NI. Из симметрии нашей задачи видно, что В одинаково на всем контуре Г, если, конечно, намагниченность, а следовательно, и поле Нтоже постоянны на контуре Г. Уравнение (36.19) при таких условиях принимает вид

7 Физика сплошных сред - изображение 232

где l —длина кривой Г. Таким образом,

Именно изза того что в задачах подобного типа поле Нпрямо пропорционально - фото 233

Именно из-за того что в задачах подобного типа поле Нпрямо пропорционально намагничивающему току, оно иногда назы­вается намагничивающим.

Единственное, что нам теперь требуется,— это уравнение, связывающее Нс В. Однако такого уравнения просто не суще­ствует! У нас есть, конечно, уравнение (36.18), но от него мало проку, ибо в ферромагнитных материалах типа железа оно не дает прямой связи между Ми В. Намагниченность М зависит от всей предыдущей истории данного образца железа, а не толь­ко от того, каково поле В в данный момент и как оно изменялось раньше.

Впрочем, еще не все потеряно. В некоторых простых слу­чаях мы все же можем найти решение. Если взять ненамагни­ченное железо, скажем, отожженное при высокой температуре, то для такого простого тела, как тор, магнитная предыстория всего железа будет одной и той же. Затем из экспериментальных измерений мы можем кое-что сказать относительно М, а следо­вательно, и о связи между Ви Н. Из уравнения (36.20) видно, что поле Ввнутри тора равно произведению некоторой посто­янной на величину тока в обмотке I. А поле Вможно измерить интегрированием по времени э.д.с. в намагничивающей обмотке, изображенной на рисунке (или в дополнительной обмотке, на­мотанной поверх нее). Эта э.д.с. равна скорости изменения по­тока В, так что интеграл от э.д.с. по времени равен произведе­нию Вна площадь поперечного сечения тора.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




7. Физика сплошных сред отзывы


Отзывы читателей о книге 7. Физика сплошных сред, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x