Ричард Фейнман - 7. Физика сплошных сред

Тут можно читать онлайн Ричард Фейнман - 7. Физика сплошных сред - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    7. Физика сплошных сред
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.3/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 7. Физика сплошных сред краткое содержание

7. Физика сплошных сред - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

7. Физика сплошных сред - читать онлайн бесплатно полную версию (весь текст целиком)

7. Физика сплошных сред - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

На фиг. 36.8 показано соотношение между Ви Н, наблюда­емое в сердечнике из мягкого железа.

Фиг 368 Типичная кривая намагничивания и петля гистерезиса мягкого железа - фото 234

Фиг. 36.8. Типичная кривая намагничивания и петля гис­терезиса мягкого железа.

Когда ток включается в первый раз, увеличение Вс Нпроисходит по кривой а. Обра­тите внимание на различие масштабов по осям Ви Н; вначале, чтобы получить большое В, необходимо относительно малое Н. Почему же в случае железа поле В намного больше, чем было бы без него? Да потому, что возникает большая намагниченность М, эквивалентная большому поверхностному току в железе, а поле определяется суммой этого тока и тока проводимости в обмотке. А почему намагниченность Моказывается такой боль­шой, мы обсудим позднее.

При больших значениях Нкривая намагничивания «вырав­нивается». Мы говорим, что железо насыщается. В масштабах нашей фигуры кривая становится горизонталь­ной, на самом же деле намагниченность продол­жает слабо расти: для больших полей Встановит­ся равным Ни намагни­ченность Муже не увели­чивается. Кстати, если бы сердечник был сделан из немагнитного материала, то намагниченность Мбыла бы равна нулю, а В было бы равно для всех полей Н.

Прежде всего заметим, что кривая а на фиг. 36.8, так назы­ваемая кривая намагничивания,— в высшей степени нелинейна. Впрочем, положение здесь гораздо сложнее. Если после до­стижения насыщения мы уменьшим ток в катушке и вернем Нснова к нулю, магнитное поле В будет падать по кривой b. Когда Ндостигнет нуля, В еще не будет нулем. Даже после выключения намагничивающего тока магнитное поле в железе остается: железо становится постоянно намагниченным. Если теперь включить в катушке ток в обратном направлении, то кривая ВНпойдет дальше по ветви b до тех пор, пока же­лезо не намагнитится до насыщения в противоположном нап­равлении. При дальнейшем уменьшении тока до нуля В пойдет по кривой с. Когда мы меняем ток от большой положительной до большой отрицательной величины, кривая ВНбудет идти вверх и вниз очень близко к ветвям b и c . Если же, однако, Нменять каким-то произвольным образом, то возникнут более сложные кривые, которые, вообще говоря, будут лежать между кривыми b и c . Кривая, полученная повторными изменениями полей, называется петлей гистерезиса.

Вы видите, что невозможно написать функциональное со­отношение типа В= f ( Н), так как Вв любой момент зависит не только от Нв тот же момент, но и от всей предыстории мате­риала. Естественно, что намагниченность и петли гистерезиса для разных веществ различны. Форма кривых критически зави­сит от химического состава материала, а также от деталей тех­нологии его приготовления и последующей физической обра­ботки. В следующей главе мы обсудим физическое объяснение некоторых из этих сложностей.

§ 4. Индуктивность с железным сердечником

Одно из наиболее важных применений магнитные материа­лы находят в электрических устройствах, например трансфор­маторах, электрических моторах и т. п. Объясняется это преж­де всего тем, что с помощью железа можно контролировать по­ведение магнитного поля, а также при данном электрическом токе получать значительно большие поля. Например, типичное «тороидальное» индуктивное устройство во многом напоминает то, что изображено на фиг. 36.7. При большой индуктивности мы можем сделать устройство гораздо меньшего объема и затратить намного меньше меди, чем в эквивалентном устройстве с «воз­душным сердечником». Поэтому при большой индуктивности мы добиваемся гораздо меньшего сопротивления обмотки, так что устройство более близко к «идеальному», особенно при низ­ких частотах. Нетрудно качественно проследить, как работает такое устройство. Если в обмотке течет ток I , то создаваемое внутри поле Н, как это видно из уравнения (36.20), пропор­ционально току I . Напряжение V на выводах связано с магнит­ным полем В. Если пренебречь сопротивлением обмотки, то напряжение V будет пропорционально dB/dt. Индуктивность L, которая равна отношению V к dI/dt (см. гл. 17, § 7, вып. 6), зависит, таким образом, от связи между В и Н в железе. По­скольку В гораздо больше Н, то это во много раз увеличивает индуктивность, как будто малый ток в катушке, который обыч­но дает слабое магнитное поле, заставляет выстраиваться маленькие магнитики, сидящие в железе, и создает «магнитный» ток, который в огромное число раз больше внешнего тока в обмотке. Все происходит так, как будто в катушке возникает ток, намного больший, чем на самом деле. Когда мы меняем направление тока, все маленькие магнитики переворачиваются, внутренние токи потекут в другом направлении и наведенная э.д.с. получается гораздо больше, чем без железа. Если мы хо­тим вычислить индуктивность, то это можно сделать, вычисляя энергию наподобие того, как описано в гл. 17, § 8. Скорость, с которой энергия отдается источником тока, равна IV . Напря­жение V равно площади поперечного сечения сердечника А, умноженной на N и на dB/dt. А согласно выражению (36.20), I = (e 0 c 2 l/N) H . Таким образом,

Интегрируя по времени получаем Заметьте что 1А равно объему тора - фото 235

Интегрируя по времени, получаем

Заметьте что 1А равно объему тора поэтому плотность энергии иUОбъем - фото 236

Заметьте, что равно объему тора, поэтому плотность энергии и=U/(Объем магнитного материала), как мы показали, равна

Здесь выявляется одно интересное обстоятельство Когда в обмотке течет - фото 237

Здесь выявляется одно интересное обстоятельство. Когда в обмотке течет переменный ток, то В в железе «ходит» по петле гистерезиса. А поскольку В — неоднозначная функция Я,

то интеграл ∫ HdB по замкнутому циклу равен не нулю, а площади, заключенной внутри петли гистерезиса. Таким об­разом, за каждый цикл источник тока отдает некоторую энер­гию, равную площади петли гистерезиса. Это есть потери из электромагнитного цикла; энергия уходит на нагревание желе­за. Такие потери называются гистерезисными. Чтобы они были поменьше, петлю гистерезиса желательно сделать как можно уже. Один из способов уменьшить площадь петли — это мак­симально уменьшить поле в каждом цикле. Для меньших мак­симальных полей мы получаем гистерезисную кривую, подобную изображенной на фиг. 36.9.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




7. Физика сплошных сред отзывы


Отзывы читателей о книге 7. Физика сплошных сред, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x