Ричард Фейнман - 7. Физика сплошных сред
- Название:7. Физика сплошных сред
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 7. Физика сплошных сред краткое содержание
7. Физика сплошных сред - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Но поскольку в нашей полости Мравна нулю, то мы получаем
С другой стороны, для дискообразной полости, перпендикулярной М,
что в нашем случае превращается в
или в величинах В:
Наконец, для сферической полости аналогия с уравнением (36.3) дала бы
Результаты для магнитного поля, как видите, отличаются от тех, которые мы имели для электрического поля.
Конечно, их можно получить и более физически, непосредственно используя уравнения Максвелла. Например, уравнение (36.34) непосредственно следует из уравнения С·B=0. (Возьмите гауссову поверхность, которая наполовину находится в материале, а наполовину — вне его.) Подобным же образом вы можете получить уравнение (36.33), воспользовавшись контурным интегралом по пути, который туда идет по полости, а назад возвращается через материал. Физически поле в полости уменьшается благодаря поверхностным токам, определяемым как V X М. На вашу долю остается показать, что уравнение (36.35) можно получить, рассматривая эффекты поверхностных токов на границе сферической полости.
При нахождении равновесной намагниченности из уравнения (36.29) удобнее, оказывается, иметь дело с Н, поэтому мы пишем
В приближении сферической полости коэффициент Я следует взять равным 1 / 3 , но, как вы увидите позже, нам придется пользоваться несколько другим его значением, а пока оставим его как подгоночный параметр. Кроме того, все поля мы возьмем в одном и том же направлении, чтобы нам не нужно было заботиться о направлении векторов. Если бы теперь мы подставили уравнение (36.36) в (36.29), то получили бы уравнение, которое связывает намагниченность М с намагничивающим полем Н:
Однако это уравнение невозможно решить точно, так что мы будем делать это графически.
Сформулируем задачу в более общей форме, записывая уравнение (36.29) в виде
где М нас— намагниченность насыщения, т. е. N m , a x — величина m B a /kT. Зависимость М/М нас от х показана на фиг. 36.13 (кривая а).
Фиг. 36.13. Графическое решение уравнений (36.37) и (36.38),
Воспользовавшись еще уравнением (36.36) для В а , можно записать х как функцию от М:
Эта формула определяет линейную зависимость между М/М нас и х при любой величине Н. Прямая пересекается с осью х в точке x=mH/kT, и наклон ее равен e 0 с 2 kT/mlKM нас . Для любого частного значения Н это будет прямая, подобная прямой b на фиг. 36.13. Пересечение кривых а и о дает нам решение для М/М нас. Итак, задача решена.
Посмотрим теперь, годны ли эти решения при различных обстоятельствах. Начнем с H =0. Здесь представляются две возможности, показанные кривыми b 1 и b 2 на фиг. 36.14.
Фиг. 36.14. Определение намагниченности при Н=0.
Обратите внимание, что наклон прямой (36.38) пропорционален абсолютной температуре Т. Таким образом, при высоких температурах получится прямая, подобная b 1 Решением будет только М/М нас=0. Иначе говоря, когда намагничивающее поле Я равно нулю, намагниченность тоже равна нулю. При низких температурах мы получили бы линию типа b 2и стали возможны два решения для М/М нас: одно М/М нас=0, а другое М/М наспорядка единицы. Оказывается, что только второе решение устойчиво, в чем можно убедиться, рассматривая малые вариации в окрестности указанных решений.
В соответствии с этим при достаточно низких температурах магнитные материалы должны намагничиваться спонтанно. Короче говоря, когда тепловое движение достаточно мало, то взаимодействие между атомными магнитиками заставляет их выстраиваться параллельно друг другу, получается постоянно намагниченный материал, аналогичный постоянно поляризованным сегнетоэлектрикам, о которых мы говорили в гл. 11 (вып. 5).
Если мы отправимся от высоких температур и начнем двигаться вниз, то при некой критической температуре, называемой температурой Кюри Т c , неожиданно проявляется ферромагнитное поведение. Эта температура соответствует на фиг. 36.14 линии b 3 , касательной к кривой а, наклон которой равен единице. Так что температура Кюри определяется из равенства
При желании уравнение (36.38) можно записать в более простом виде через Т c :
Что же получается для малых намагничивающих полей Н? Из фиг. 36.14 нетрудно понять, что получится, если нашу прямую линию сдвинуть немного направо. В случае низкой температуры точка пересечения немного сдвинется направо по слабо наклоненной части кривой а и изменения М будут сравнительно невелики. Однако в случае высокой температуры точка пересечения побежит по крутой части кривой а и изменения М станут относительно быстрыми. Эту часть кривой мы фактически можем приближенно заменить прямой линией а с единичным наклоном и написать
Читать дальшеИнтервал:
Закладка: