Ричард Фейнман - 7. Физика сплошных сред

Тут можно читать онлайн Ричард Фейнман - 7. Физика сплошных сред - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    7. Физика сплошных сред
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.3/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 7. Физика сплошных сред краткое содержание

7. Физика сплошных сред - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

7. Физика сплошных сред - читать онлайн бесплатно полную версию (весь текст целиком)

7. Физика сплошных сред - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Полагают, что направленный вверх спин одного из электро­нов внутренней оболочки, который ответствен за магнетизм, стремится заставить спины электронов проводимости, витаю­щих вокруг него, повернуться в противоположную сторону. Можно надеяться, что это ему вполне удастся, ибо электроны проводимости движутся в той же самой области, что и «магнит­ные» электроны. А поскольку они движутся то туда, то сюда, то могут передать свой приказ перевернуться «вверх ногами» спинам электронов других атомов; таким образом, «магнитный» электрон заставляет электрон проводимости направить спин в противоположную сторону, а тот в свою очередь заставляет следующий «магнитный» электрон направить свой спин проти­воположно его спину. Это двойное взаимодействие эквивалентно взаимодействию, стремящемуся выстроить два «магнитных» электрона в одном направлении. Иными словами, тенденция соседних спинов быть параллельными есть результат действия промежуточной среды, которая в некотором смысле стремится быть противоположной им обоим. Этот механизм не требует, чтобы все электроны проводимости были повернуты «вверх ногами». Достаточно, чтобы они лишь слегка стремились по­вернуться вниз, и шансы «магнитных» электронов повернуться вверх перевесят. Как полагают те исследователи, которые рабо­тали с этими вещами, это и есть тот механизм, который ответ­ствен за ферромагнетизм. Но должен отметить, что вплоть до сегодняшнего дня никто не может вычислить величину l мате­риала, зная просто, что в периодической системе элементов этот материал стоит, скажем, под номером 26. Короче говоря, мы все еще не можем понять явление до конца.

Теперь же продолжим рассуждения о нашей теории, а потом вернемся снова назад и обсудим некоторые ошибки избранного нами пути. Если магнитный момент какого-то электрона на­правлен вверх, то его энергия частично обусловлена внешним полем, а частично связана с тенденцией спинов быть параллель­ными. Поскольку при параллельных спинах энергия меньше, то эффект получается таким же, как и от «внешнего эффектив­ного поля». Но помните, что обязано это не истинным магнит­ным силам, а более сложному взаимодействию. Во всяком слу­чае, в качестве выражений для энергии двух спиновых состояний «магнитного» электрона мы примем уравнения (37.1). От­носительная вероятность этих двух состояний при температуре Т пропорциональна exp[-энергия/kT], что можно записать как е ±х , где х= | m |(H+lM/e 0с 2)/kT. Если затем мы вычислим среднюю величину магнитного момента, то найдем (как и в предыдущей главе), что она равна

M=N | m |th x. (37.2)

Теперь я могу подсчитать внутреннюю энергию материала. Отметим, что энергия электрона в точности пропорциональна магнитному моменту, так что все равно, вычислять ли средний момент или среднюю энергию. Среднее значение энергии будет при этом

Но это не совсем верно Выражение lMe 0c 2представляет взаимодействие всех - фото 275

Но это не совсем верно. Выражение lM/e 0c 2представляет взаимодействие всех возможных пар атомов, а мы должны пом­нить, что каждую пару следует учитывать только один раз. (Ког­да мы учитываем энергию одного электрона в поле остальных, а затем энергию второго электрона в поле остальных, то мы еще раз учитываем часть первой энергии.) Поэтому выражение взаи­модействия мы должны разделить на 2 и наша формула для энергии приобретет вид

В предыдущей главе мы обнаружили одну очень интересную особенность для каждого - фото 276

В предыдущей главе мы обнаружили одну очень интересную особенность: для каждого материала ниже определенной темпе­ратуры существует такое решение уравнений, при котором маг­нитный момент не равен нулю даже в отсутствие внешнего на­магничивающего поля. Если в уравнении (37.2) мы положим Н=0, то найдем

где М насNm и T c mlM нас ke 0 c 2 Решив это уравнение графически - фото 277

где М нас=N|m| и T c = |m|lM нас ./ke 0 c 2 . Решив это уравнение (графи­чески или каким-то другим способом), мы найдем, что отноше­ние М/М нас как функция от T/T c представляет кривую, наз­ванную на фиг. 37.1 «квантовая теория».

Фиг 371 Зависимость спонтанной намагниченности Н0 ферромагнитных - фото 278

Фиг. 37.1. Зависимость спонтанной намагниченности (Н=0) ферромагнитных кристаллов от температуры.

Пунктирная кривая «Кобальт, Никель» — это полученная экспериментально кри­вая для кристаллов этих элементов. Теория и эксперимент находятся в разумном согласии. Там же представлены резуль­таты классической теории, в которой вычисления проводились в предположении, что атомные магнитики могут иметь всевоз­можные ориентации в пространстве.

Можете убедиться, что это предположение приводит к предсказаниям, которые весьма далеки от экспериментальных данных.

Даже квантовая теория недостаточно хорошо описывает наблюдаемое поведение при высоких и низких температурах. Причина этого отклонения заключена в принятом нами доволь­но грубом приближении: мы предполагали, что энергия атома зависит лишь от средней намагниченности соседних с ним ато­мов. Другими словами, каждый атом со спином, направленным вверх, находящийся по соседству с данным атомом, из-за квантовомеханического эффекта выстраивания вносит свой вклад в энергию. А сколько таких атомов? В среднем это из­меряется величиной намагниченности, но это только в сред­нем. Может оказаться, что для какого-то одного атома спины всех его соседей направлены вверх. Тогда его энергия будет выше средней. У другого же спины некоторых соседей направ­лены вверх, а некоторых — вниз, а среднее может быть нулем, и тогда никакого вклада в энергию вообще не будет и т. д. Из-за того что атомы в разных местах имеют различное окружение с различным числом направленных вверх и вниз спинов, нам следовало бы воспользоваться более сложным способом усред­нения. Вместо того чтобы брать один атом, подверженный сред­нему влиянию, нам следовало бы взять каждый атом в его реаль­ной обстановке, подсчитать его энергию, а затем найти среднюю энергию. Но как же все-таки определить, сколько соседей ато­мов направлено вверх, а сколько — вниз? Это как раз и нужно вычислить, но здесь мы сталкиваемся с очень сложной задачей внутренних корреляций,— задачей, которую никому еще не уда­валось решить. Эта животрепещущая и интригующая проблема в течение многих лет волновала умы физиков; по этому вопросу писалось множество статей крупнейшими учеными, но и они не могли найти полного решения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




7. Физика сплошных сред отзывы


Отзывы читателей о книге 7. Физика сплошных сред, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x