Ричард Фейнман - 7. Физика сплошных сред

Тут можно читать онлайн Ричард Фейнман - 7. Физика сплошных сред - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    7. Физика сплошных сред
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.3/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 7. Физика сплошных сред краткое содержание

7. Физика сплошных сред - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

7. Физика сплошных сред - читать онлайн бесплатно полную версию (весь текст целиком)

7. Физика сплошных сред - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

На фиг. 37.6 показаны полученные из опыта кривые намагничивания монокристал­лов железа.

Фиг 376 График компоненты М параллельной полю Н при различных - фото 284

Фиг. 37.6. График компоненты М, параллельной полю Н, при раз­личных направлениях Н (по отношению к осям кристалла).

Чтобы вы поняли их, я пред­варительно должен объяснить кое-какие обозначения, используемые для описания направлений в кристалле. Существует мно­го способов расслоения кристалла на плос­кости, в которых расположены атомы.

Каждый из вас, кто в прошлом работал или бывал в саду или на винограднике, знаком с этим любопытным зрелищем. Посмотрев в одну сторону, вы видите линию деревьев, а если посмотрите в другую,— вам откроется совсем другой ряд и т. д. Так и в кристалле — там есть определенные семейства плоскостей, содержащие много атомов; у таких плоскостей есть важная особенность (для простоты рассмотрим кубический кристалл). Если мы отметим, где эти плоскости пересекаются с тремя осями координат, то окажется, что обратные величины расстояний трех точек пересечения от начала относятся как целые числа. Эти три целых числа и принимаются для обозначения плоскостей. На фиг. 37.7, а, например, показана плоскость, параллельная плоскости yz. Она называется плос­костью (100), так как обратные величины отрезков, отсекае­мых этой плоскостью по осям у и z, равны нулю.

Фиг 377 Способы обозначения кристаллических плоскостей Направление - фото 285

Фиг. 37.7. Способы обозначения кристаллических плоскостей.

Направление, перпендикулярное этой плоскости (в кубическом кристалле), задается тем же самым набором чисел, но записывается в квад­ратных скобках: [100]. Основную идею в случае кубического кристалла понять очень легко, ибо символ [100] обозначает вектор, который имеет единичную компоненту в направлении оси х и нулевые в направлениях осей у и . z. Комбинация [110] обозначает направление под 45° к осям x и y, как показано на фиг. 37.7, б, а [111] — направление диагонали куба (фиг. 37.7,в).

Вернемся теперь к фиг. 37.6. На ней мы видим кривые на­магничивания монокристалла в различных направлениях. Прежде всего заметьте, что для очень слабых полей, столь сла­бых, что в нашем масштабе их трудно изобразить, намагничен­ность чрезвычайно быстро возрастает до весьма больших зна­чений. Если приложить поле в направлении [100], т. е. в одном из направлений легкого намагничивания, то кривая идет вверх до еще большего значения, затем несколько закругляется и наступает насыщение. Происходит это потому, что домены, которые уже там есть, ликвидируются очень легко. Чтобы пе­редвинуть доменные стенки и «проглотить» все «неправильные» домены, требуется совсем слабое поле. Монокристаллы железа обладают огромной проницаемостью (в магнитном смысле), гораздо большей, чем поликристаллическое железо. Совер­шенный кристалл намагничивается очень легко. Почему же его кривая все же закругляется? Почему она не идет прямо до на­сыщения? Точно не известно. Быть может, вам когда-нибудь удастся изучить это явление. Мы понимаем, почему при боль­ших полях она плоская. Когда весь кубик становится единым доменом, то добавочное магнитное поле не может создать боль­шей намагниченности, она уже равна M нас— значит, спины всех электронов направлены вверх.

Что получится, если мы попытаемся повторить то же самое для направления [110], которое лежит в плоскости ху под уг­лом 45° к оси х? Мы включаем небольшое поле, и намагничен­ность за счет роста домена резко увеличивается. Если затем мы продолжаем увеличивать поле, то выясняется, что для достиже­ния насыщения поле должно быть довольно большим, ибо век­тор намагниченности нужно повернуть в сторону от направле­ния легкого намагничивания. Если это объяснение правильно, то при экстраполяции кривой [110] точка пересечения с верти­кальной осью должна будет давать значение намагниченно­сти, составляющее 1/Ц2от намагниченности насыщения. Ока­зывается, что так оно на самом деле и происходит. Это отношение очень-очень близко к 1/Ц2. Аналогично для направ­ления [111], которое идет по диагонали куба, мы находим, как и ожидали, что при экстраполяции кривая пересекает вер­тикальную ось на расстоянии, составляющем 1/Ц2 от значе­ния, соответствующего насыщению.

На фиг. 37.8 показано соответствующее поведение двух других ферромагнетиков: никеля и кобальта.

Фиг 378 Кривые намагничивания для монокристаллов железа никеля и кобальта - фото 286

Фиг. 37.8. Кривые намагничивания для монокристаллов железа, никеля и кобальта.

Никель отличает­ся от железа. Оказывается, что направлением легкого намаг­ничивания у него будет направление [111]. Кобальт имеет гек­сагональную кристаллическую структуру; для этого случая система обозначений была изменена. Здесь в основании шестиугольника располагают три оси и еще одну ось, перпендикуляр­ную к ним, так что здесь используется четыре числа. Направ­ление [0001] — это направление гексагональной оси, а [1010]— направление, перпендикулярное к этой оси. Вы видите, что кристаллы различных металлов устроены по-разному.

Теперь мы рассмотрим такой поликристаллический материал, как обычный кусок железа. Внутри него содержится огромное множество маленьких кристалликов, кристаллические оси которых направлены во все стороны. Но это не то же самое, что домены. Вспомните, все домены были частью одного кристалла, а в куске железа, как видно из фиг. 37.9, содержится множество различных кристаллов с разной ориентацией.

Фиг 379 Микроструктура ненамагниченного поликристаллического - фото 287

Фиг. 37.9. Микроструктура ненамагниченного поли­кристаллического ферромагнитного материала.

Каждый кристаллик имеет направление легкого намагничивания и разбивается на домены, которые обычно спонтанно намагни­чены в атом направлении.

В каждом из этих кристаллов, вообще говоря, содержится несколько доменов. Когда к куску поликристаллического материала мы прилагаем слабое магнитное поле, доменные барьеры в кристалликах на­чинают смещаться, и домены, направление намагниченности которых совпадает с направлением легкого намагничивания, растут все больше и больше. До тех пор пока поле остается очень малым, этот рост обратим; если мы выключим поле, намаг­ниченность снова вернется к нулю. Этот участок кривой намаг­ничивания обозначен на фиг. 37.10 буквой а.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




7. Физика сплошных сред отзывы


Отзывы читателей о книге 7. Физика сплошных сред, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x