Ричард Фейнман - 6a. Электродинамика
- Название:6a. Электродинамика
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 6a. Электродинамика краткое содержание
6a. Электродинамика - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
(24.19)
Фиг. 24.6. Магнитное поле в волноводе.
Кроме электрических полей, существуют и магнитные поля, которые тоже движутся волнообразно. Мы не будем сейчас заниматься выводом выражений для них. Ведь c 2СXВ = dE/dt, и линии В циркулируют вокруг областей, где dE/dt — наибольшее, т. е. на полпути между максимумом и минимумом Е. Петли В лежат параллельно плоскости xz и между гребнями и впадинами Е (фиг. 24.6).
§ 3. Граничная частота
Уравнение (24.16) для k zна самом деле имеет два корня — один с плюсом, другой с минусом. Ответ следует писать так:
(24.20)
Смысл этих двух знаков просто в том, что волны в волноводе могут бежать и с отрицательной фазовой скоростью (в направлении —z), и с положительной. Волны, естественно, должны иметь возможность бежать в любую сторону. И раз одновременно могут существовать оба типа волн, то решение в виде стоячих волн тоже возможно.
Наше уравнение для k z сообщает нам также, что высшие частоты приводят к большим значениям k g , т. е. к более коротким волнам, пока в пределе больших w величина k не станет равной w/с — тому значению, которое бывает, когда волна бежит в пустоте. Свет, который мы «видим» сквозь трубу, все еще бежит со скоростью с. Но посмотрите зато, какая странная вещь получается, когда частота убывает. Сперва волны становятся все длиннее и длиннее. Но если частота w станет чересчур малой, то под корнем в (24.20) внезапно появится отрицательное число. Это произойдет, когда w перевалит через pс/а или когда l 0станет больше 2а. Иначе говоря, когда частота становится меньше некоторой критической частоты w c=pс/а, волновое число k z (а также l g ) становится мнимым и никакого решения у нас не остается. Или остается? Кто, собственно, сказал, что k z должно быть действительным? Что случится, если оно станет мнимым? Уравнения-то поля по-прежнему ведь будут удовлетворяться. Может быть, и мнимые k z тоже представляют какую-то волну?
Предположим, что w действительно меньше w c; тогда можно написать
(24.21)
где k' — действительное положительное число
(24.22)
Если теперь вернуться к нашей формуле (24.12) для Е y , то надо будет написать
(24.23)
что можно также представить в виде
(24.24)
Это выражение приводит к полю Е, которое во времени колеблется как e i w t , a no z меняется как e ± k ' z . Оно плавно убывает или возрастает с z, как всякая действительная экспонента. В нашем выводе мы не думали о том, откуда взялись волны, где их источник, но, конечно, где-то в волноводе он должен быть. И знак, который стоит при k', должен быть таков, чтобы поле убывало при удалении от источника волн.
Итак, при частотах ниже w с — p с/а волны вдоль трубы не распространяются; осциллирующее поле проникает в трубу лишь на расстояние порядка i/k'. По этой причине частоту w с называют «граничной частотой» волновода. Глядя на (24.22), мы видим, что для частот чуть пониже w cчисло k' мало, и поля могут проникать в трубу довольно далеко. Но если со намного меньше w с, коэффициент k' в экспоненте равняется p/а, и поле отмирает чрезвычайно быстро (фиг. 24.7). Поле убывает в е раз на расстоянии а/p, т. е. на трети ширины волновода. Поля проникают в волновод на очень малое расстояние от источника.
Мы хотим еще раз подчеркнуть эту характерную черту нашего анализа прохождения волн по трубе — появление мнимого волнового числа k z . Когда, решая уравнение в физике, мы получаем мнимое число, то это обычно ничего физического не означает. Для волн, однако, мнимое волновое число действительно нечто означает. Волновое уравнение по-прежнему удовлетворяется; оно только означает, что решение приводит к экспоненциально убывающему полю вместо распространяющихся волн
Фиг. 24.7. Изменение Е y с ростом z при w
Итак, если в любой задаче на волны k при какой-то частоте становится мнимым, это означает, что форма волны меняется — синусоида переходит в экспоненту.
§ 4. Скорость волн в волноводе
Та скорость волн, о которой мы пока говорили,— это фазовая скорость, т. е. скорость узлов волны; она есть функция частоты. Если подставить (24.17) в (24.18), то можно написать
(24.25)
Для частот выше граничной (для которых бегущая волна существует) w c/w меньше единицы, v фаз— действительное число, большее скорости света. Мы уже видели в гл. 48 (вып. 4), что фазовые скорости, большие скорости света, возможны, потому что это просто движутся узлы волн, а не энергия и не информация. Чтобы узнать, как быстро движутся сигналы, надо подсчитать быстроту всплесков или модуляций, вызываемых интерференцией волн одной частоты с одной или несколькими волнами слегка иных частот [см. гл. 48 (вып. 4)]. Скорость огибающей такой группы волн мы назвали волновой скоростью; это не w/k, a d w /dk:
(24.26)
Дифференцируя (24.17) по w и переворачивая, чтобы получить d w /dk, получаем
(24.27)
Это меньше скорости света.
Среднее геометрическое между v фаз и v грв точности равно с — скорости света:
(24.28)
Это любопытно, ведь сходное соотношение мы встречали и в квантовой механике. У частицы с любой скоростью (даже у релятивистской) импульс р и энергия U связаны соотношением
(24.29)
Но в квантовой механике энергия — это hw, а импульс —это h/l’, или h k; значит, (24.29) можно записать так:
Читать дальшеИнтервал:
Закладка: