Ричард Фейнман - 6. Электродинамика
- Название:6. Электродинамика
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 6. Электродинамика краткое содержание
6. Электродинамика - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
то и ток делает то же самое. Возникает переменный ток
Схема такой цепи приведена на фиг. 17.7.
Мы можем также заметить, что э. д. с. определяет количество энергии, поставляемое генератором. Каждый заряд в проводе получает в единицу времени энергию, равную F·v, где F — сила, действующая на заряд, a v — его скорость. Пусть теперь количество движущихся зарядов на единице длины провода равно n ; тогда мощность, выделяющаяся в элементе ds провода, равна
Фиг. 17.7. Цепь с генератором переменного тока и сопротивлением.
В проводе скорость v всегда направлена вдоль ds, так что мощность можно переписать в виде
Полная мощность, выделяемая во всей цепи, есть интеграл от этого выражения по всей петле:
(17.15)
Вспомним теперь, что qnv — это ток I и что э. д. с. определяется как интеграл от F/q по всей цепи. Мы получаем
(17.16)
Когда в катушке генератора имеется ток, на нее непременно действуют механические силы. В самом деле, мы знаем, что вращающий момент, действующий на катушку, пропорционален ее магнитному моменту, напряженности магнитного поля В и синусу угла между ними. Магнитный момент есть ток катушки, умноженный на ее площадь. Поэтому вращающий момент равен
(17.17)
Скорость, с которой должна совершаться механическая работа, чтобы поддерживать вращение катушки, есть угловая скорость w, умноженная на вращающий момент силы:
(17.18)
Сравнивая это выражение с (17.14), мы видим, что затраты механической работы в единицу времени, требуемые для вращения катушки против магнитных сил, в точности равны eI — электрической энергии, поставляемой
э. д. с. генератора в единицу времени. Вся механическая энергия, расходуемая в генераторе, появляется в виде электрической энергии в цепи.
В качестве другого примера токов и сил, обусловленных индуцированной э. д. с., проанализируем, что же происходит в установке, показанной на фиг. 17.1. Имеются U-образная проволока и скользящая перемычка, расположенные в однородном магнитном поле, перпендикулярном плоскости параллельных проволок. Теперь предположим, что «дно» U (левая часть фиг. 17.1) сделано из проволоки с большим сопротивлением, тогда как две боковые проволоки сделаны из хорошего проводника вроде меди — в этом случае нам не надо беспокоиться об изменении сопротивления цепи при движении перекладины. Как и раньше,
э. д. с. цепи равна
(17.19)
Ток в цепи пропорционален этой э. д. с. и обратно пропорционален сопротивлению цепи:
(17.20)
Благодаря этому току на перемычку будет действовать магнитная сила, пропорциональная длине перемычки, току в ней и магнитному полю:
(17.21)
Подставляя I из (17.20), получаем для силы
(17.22)
Мы видим, что сила пропорциональна скорости перемещения перемычки. Направление силы, как легко понять, противоположно скорости. Такая «пропорциональная скорости» сила, похожая на силу вязкости, получается всякий раз, когда движущиеся проводники создают индуцированные токи в магнитном поле. Вихревые токи, о которых мы говорили в предыдущей главе, приводят также к силам, действующим на проводники и пропорциональным скорости проводника, хотя такие случаи в общем дают более сложные распределения токов, которые трудно анализировать.
При конструировании механических систем часто бывает удобно располагать тормозящими силами, пропорциональными скорости. Вихревые токи дают один из наиболее удобных способов получения таких зависящих от скорости сил.
Пример применения подобных сил можно найти в обычном домашнем счетчике — ваттметре. Там имеется тонкий алюминиевый диск, вращающийся между полюсами постоянного магнита. Этот диск приводится в движение маленьким электромотором, вращающий момент которого пропорционален мощности, потребляемой в электросети квартиры. Вихревые токи в диске вызывают силу сопротивления, пропорциональную скорости. Следовательно, скорость диска устанавливается пропорциональной скорости потребления электроэнергии. С помощью счетчика, присоединенного к вращающемуся диску, подсчитывается число оборотов диска. Так определяется полная потребленная энергия, т. е. число использованных ватт-часов.
Согласно формуле (17.22), сила от индуцированных токов, т. е. всякая сила от вихревых токов, обратно пропорциональна сопротивлению. Сила тем больше, чем лучше электропроводность материала. Причина, разумеется, заключается в том, что при малом сопротивлении э. д. с. создает больший ток, а большие токи дают большие механические силы.
Из наших формул мы можем увидеть, как механическая энергия превращается в электрическую энергию. Как и раньше, электрическая энергия, выделяемая в сопротивлении цепи, есть произведение eI , Работа в единицу времени, совершаемая при движении перекладины, есть произведение силы, действующей на перекладину, на ее скорость. Используя для силы выражение (17.21), получаем работу в единицу времени:
Мы видим, что она действительно равна произведению $I, которое мы получаем из (17.19) и (17.20). Снова механическая работа появляется в виде электрической энергии.
§ 6. Взаимная индукция
Теперь нам нужно рассмотреть случай, когда проволочные катушки неподвижны, а меняются магнитные поля. Описывая образование магнитного поля токами, мы рассматривали только случай постоянных токов. Но если токи меняются медленно, магнитное поле в каждый момент будет примерно такое же, как магнитное поле постоянного тока. Мы будем считать в этом параграфе, что токи всегда меняются достаточно медленно, и можно сказать, что это утверждение справедливо.
Читать дальшеИнтервал:
Закладка: