Ричард Фейнман - 6. Электродинамика

Тут можно читать онлайн Ричард Фейнман - 6. Электродинамика - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    6. Электродинамика
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.88/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 6. Электродинамика краткое содержание

6. Электродинамика - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

6. Электродинамика - читать онлайн бесплатно полную версию (весь текст целиком)

6. Электродинамика - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

""Аналогично, э. д. с. в катушке 1 будет зависеть не только от изменяющегося тока в катушке 2, но и от изменяющегося тока в ней самой:

(17.32)

Коэффициенты m 22и m 11всегда отрицательны Обычно пишут 1733 где ж 1и ж - фото 137

Коэффициенты m 22и m 11всегда отрицательны. Обычно пишут

(17.33)

где ж 1и ж 2называют коэффициентами самоиндукции двух катушек (или индуктивностями).

Конечно, э. д. с. самоиндукции будет существовать даже для одной катушки. Любая катушка сама по себе обладает коэффициентом самоиндукции ж и ее

э. д. с. будет пропорцио­нальна скорости изменения тока в катушке. Обычно считают, Что э. д. с. и ток одной катушки положительны, если они на­правлены одинаково. При этом условии для отдельной катушки

можно написать

6 Электродинамика - изображение 138

(17.34)

Знак минус указывает на то, что э. д. с. противодействует изменению тока, ее часто называют «обратной э. д. с.».

Поскольку любая катушка обладает самоиндукцией, проти­водействующей изменению тока, ток в катушке обладает своего рода инерцией. Действительно, если мы хотим изменить ток в катушке, мы должны преодолеть эту инерцию, присоединяя катушку к какому-то внешнему источнику, например батарее или генератору (фиг. 17.10, а). В такой цепи ток / связан с на­пряжением V соотношением

6 Электродинамика - изображение 139

(17.35)

Это соотношение имеет форму уравнения движения Ньютона для частицы в одном измерении. Поэтому мы можем исследо­вать его по принципу «одинаковые уравнения имеют одинако­вые решения». Таким образом, если поставить в соответствие напряжение V от внешнего источника приложенной внешней силе F, а ток I в катушке скорости v частицы, то коэффициент индукции катушки жбудет соответствовать массе т частицы (фиг. 17,10, б).

Таблица 17.1 · СОПОСТАВЛЕННЫЕ ВЕЛИЧИНЫ

8 Индуктивность и магнитная энергия Продолжая аналогию предыдущего - фото 140

§ 8. Индуктивность и магнитная энергия

Продолжая аналогию предыдущего параграфа, мы отметили в таблице, что в соответствии с механическим импульсом p=mv (скорость изменения которого равна приложенной силе) должна существовать аналогичная величина, равная

ж I, ско­рость изменения которой V. Разумеется, мы не имеем права говорить, что ж I — это настоящий импульс цепи; на самом деле это вовсе не так. Вся цепь может быть неподвижна и вооб­ще не иметь импульса. Просто ж I аналогично импульсу mv в смысле удовлетворения аналогичным уравнениям.

Точно так же кинетической энергии 1/ 2mv 2здесь соответствует анало­гичная величина 1/ 2ж 2. Но здесь нас ждет сюрприз. Величина 1/ 2aж I 2— действительно есть энергия и в электрическом случае. Так получается потому, что работа, совершаемая в единицу времени над индуктивностью, равна VI , а в механической систе­ме она равна Fv — соответствующей величине. Поэтому в слу­чае энергии величины не только соответствуют друг другу в математическом смысле, но имеют еще и одинаковое физиче­ское значение.

6 Электродинамика - изображение 141

Мы можем проследить это более подробно. В (17.16) мы наш­ли, что электрическая работа в единицу времени за счет сил индукции есть произведение э. д. с. и тока:

Подставляя вместо e ее выражение через токи из 1734 имеем 1738 - фото 142

Подставляя вместо e ее выражение через токи из (17.34), имеем

(17.38)

Интегрируя это уравнение находим что энергия которая требуется от внешнего - фото 143

Интегрируя это уравнение, находим, что энергия, которая требуется от внешнего источника, чтобы преодолеть э. д. с. самоиндукции и создать ток (что должно равняться накоп­ленной энергии U), равна

(17.37)

Поэтому энергия, накопленная в индуктивности, равна 1/ 2ж I 2. Применяя те же рассуждения к паре катушек, изображен­ных на фиг. 17.8 или 17.9, мы можем показать, что полная электрическая энергия системы дается выражением

1738 В самом деле начиная с тока I0 в обеих катушках можно вначале - фото 144

(17.38)

В самом деле, начиная с тока I=0 в обеих катушках, можно вна­чале включить ток I 1в катушке 1, оставляя I 2=0. Совершен­ная работа как раз равна l / 2 ж 1 l 1 2 . Но теперь, включая I 2, мы совершаем не только работу 1/ 2ж 2I 2 2против э. д. с. в цепи 2, но еще и добавочное количество работы —m I 1I 2, которая есть интеграл

от э. д. с. m (dI z /dt) в цепи 1, умноженный на теперь уже постоянный ток I 1в этой цепи.

Пусть теперь нам нужно найти силу между любыми двумя катушками по которым идут - фото 145

Пусть теперь нам нужно найти силу между любыми двумя катушками, по которым идут токи I 1и I 2. Прежде всего мы мог­ли бы использовать принцип виртуальной работы, взяв вари­ацию от энергии (17.38). Мы должны помнить, конечно, что при изменении относительного положения катушек единственной меняющейся величиной является коэффициент взаимной индук­ции m. Тогда мы могли бы записать уравнение виртуальной работы в виде

Это уравнение ошибочно потому что как мы видели раньше в него включено - фото 146

Это уравнение ошибочно, потому что, как мы видели раньше, в него включено только изменение энергии двух катушек и не включена энергия источников, которые поддерживают постоян­ными значения токов I 1 и I 2. Мы понимаем теперь, что эти источники должны поставлять энергию для компенсации инду­цированных э. д. с. в катушках во время их движения. Если мы хотим правильно применить принцип виртуальной работы, то должны включить и эти энергии. Но мы видели, что можно сделать и короче — использовать принцип виртуальной рабо­ты, помня, что полная энергия — это взятая с обратным знаком энергия U мех(то что мы называем «механической энергией»). Поэтому силу можно записать в виде

(17.39)

Тогда сила между катушками дается выражением Воспользуемся выражением 1738 - фото 147

Тогда сила между катушками дается выражением

Воспользуемся выражением (17.38) для энергии системы из двух катушек, чтобы показать, какое интересное неравенство существует между взаимной индукцией m и коэффициен­тами самоиндукции ж 1и ж 2двух катушек. Ясно, что энергия двух катушек должна быть положительной. Если мы начинаем с нулевых токов в обеих катушках и увеличиваем эти токи до некоторых значений, то тем самым мы увеличиваем энергию всей системы. В противном случае токи самопроизвольно воз­растут и будут отдавать энергию остальному миру — вещь невероятная! Далее, наше выражение для энергии (17.38) можно с

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




6. Электродинамика отзывы


Отзывы читателей о книге 6. Электродинамика, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x