Ричард Фейнман - 5b. Электричество и магнетизм

Тут можно читать онлайн Ричард Фейнман - 5b. Электричество и магнетизм - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    5b. Электричество и магнетизм
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.44/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 5b. Электричество и магнетизм краткое содержание

5b. Электричество и магнетизм - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

5b. Электричество и магнетизм - читать онлайн бесплатно полную версию (весь текст целиком)

5b. Электричество и магнетизм - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Условие, что С·J= 0, означает, что у нас могут быть только заряды, текущие по замкнутым путям. Они могут, например, течь по проводам, образующим замкнутые петли, которые назы­ваются цепями. Цепи могут, конечно, содержать генераторы или батареи, поддерживающие ток зарядов. Но в них не должно быть конденсаторов, которые заряжаются или разря­жаются. (Мы, конечно, расширим теорию, включив перемен­ные поля, но сначала мы хотим взять более простой случай постоянных токов.)

Обратимся теперь к уравнениям (13.12) и (13.13) и посмот­рим, что они означают. Первое говорит, что дивергенция В равна нулю. Сравнивая его с аналогичным уравнением электро­статики, по которому С·Е=r/e 0, можно заключить, что маг­нитного аналога электрического заряда не существует. Не бы­вает магнитных зарядов, из которых могли бы исходить ли­нии В. Если говорить о «линиях» векторного поля В, то они нигде не начинаются и нигде не оканчиваются. Но тогда откуда же они берутся? Магнитные поля «появляются» в присутствии токов; ротор, взятый от них, пропорционален плотности тока. Когда есть токи, есть и линии магнитного поля, образующие петли вокруг токов. Поскольку линии В не имеют ни конца, ни начала, они часто возвращаются в исходную точку, образуя замкнутые петли. Но могут возникнуть и более сложные случаи, когда линии не представляют собой простых петель. Однако как бы они ни шли, они никогда не исходят из точек. Никаких магнитных зарядов никто никогда не находил, поэтому С·В=0. Это же утверждение справедливо не только для маг­нитостатики, но справедливо всегда — даже для динамических полей.

5b Электричество и магнетизм - изображение 167

Связь между полем В и токами дается уравнением (13.13). Положение здесь совсем другое, в корне отличное от элек­тростатики, где у нас было СXЕ = 0. Это уравнение означало, что линейный интеграл от Е по любому замкнутому пути равен нулю:

Фиг 136 Контурный интеграл от тангенциальной составляющей В равен - фото 168

Фиг. 13.6. Контурный интег­рал от тангенциальной со­ставляющей В равен поверхно­стному интегралу от нормаль­ной составляющей вектора

(СX B).

Мы получили этот результат с помощью теоремы Стокса, со­гласно которой интеграл по любому замкнутому пути от любого векторного поля равен поверхностному интегралу от нормаль­ной компоненты ротора этого вектора (интеграл берется по дюбой поверхности, натянутой на данный контур). Применяя эту же теорему к вектору магнитного поля и используя обо­значения, показанные на фиг. 13.6, получаем

1314 Найдя rot В из уравнения 1313 имеем 1315 Интеграл от j по S - фото 169

(13.14)

Найдя rot В из уравнения (13.13), имеем

1315 Интеграл от j по S согласно 135 есть полный ток I через - фото 170

(13.15)

Интеграл от j по S, согласно (13.5), есть полный ток I через поверхность S. Поскольку для постоянных токов ток через S не зависит от формы S, если она ограничена кривой Г, то обыч­но говорят о «токе через замкнутую петлю Г». Мы имеем, та­ким образом, общий закон: циркуляция В по любой замкнутой кривой

равна току I сквозь петлю деленному на e 0с 2 1316 Этот закон называемый - фото 171

равна току I сквозь петлю, деленному на e 0с 2:

(13.16)

Этот закон, называемый законом Ампера, играет такую же роль в магнитостатике, как закон Гаусса в электростатике. Один лишь закон Ампера не определяет В через токи; мы долж­ны, вообще говоря, использовать также С·В=0. Но, как мы увидим в следующем параграфе, он может быть использован для нахождения поля в тех особых случаях, которые обладают некоторой простой симметрией.

§ 5. Магнитное поле прямого провода и соленоида; атомные токи

Можно показать как пользоваться законом Ампера определив магнитное поле - фото 172

Можно показать, как пользоваться законом Ампера, опреде­лив магнитное поле вблизи провода. Зададим вопрос: чему равно поле вне длинного прямолинейного провода цилиндри­ческого сечения? Мы сделаем одно предположение, может быть, не столь уж очевидное, но тем не менее правильное: линии поля В идут вокруг провода по окружности. Если мы сделаем такое предположение, то закон Ампера [уравнение (13.16)] говорит нам, какова величина поля. В силу симметрии задачи поле В имеет одинаковую величину во всех точках окружности, концентрической с проводом (фиг. 13.7). Тогда можно легко взять линейный интеграл от B·ds. Он равен просто величине В, умноженной на длину окружности. Если радиус окружности равен r , то

Полный ток через петлю есть просто ток I в проводе, поэтому

5b Электричество и магнетизм - изображение 173

5b Электричество и магнетизм - изображение 174

или

(13.17)

Напряженность магнитного доля спадает обратно пропорцио­нально r, расстоянию от оси провода. При желании уравнение (13.17) можно записать в векторной форме. Вспоминая, что В направлено перпендикулярно как I, так и r, имеем

1318 Фиг 137 Магнитное поле вне длинного провода с током I Фиг - фото 175

(13.18)

Фиг 137 Магнитное поле вне длинного провода с током I Фиг 138 - фото 176

Фиг. 13.7. Магнитное поле вне длинного провода с током I.

Фиг 138 Магнитное поле длинного соленоида Мы выделили множитель 14pe 0с - фото 177

Фиг. 13.8. Магнитное поле длинного соленоида.

Мы выделили множитель 1/4pe 0с 2, потому что он часто по­является. Стоит запомнить, что он равен в точности 10 -7(в си­стеме единиц СИ), потому что уравнение вида (13.17) исполь­зуется для определения единицы тока, ампера. На расстоянии 1 м ток в 1a создает магнитное поле, равное 2·10 -7 вебер/м 2 .

Раз ток создает магнитное поле, то он будет действовать с некоторой силой на соседний провод, по которому также про­ходит ток. В гл. 1 мы описывали простой опыт, показывающий силы между двумя проводами, по которым течет ток. Если про­вода параллельны, то каждый из них перпендикулярен полю В другого провода; тогда провода будут отталкиваться или при­тягиваться друг к другу. Когда токи текут в одну сторону, провода притягиваются, когда токи противоположно направле­ны,— они отталкиваются.

Возьмем другой пример, который тоже можно проанализи­ровать с помощью закона Ампера, если еще добавить кое-какие сведения о характере поля. Пусть имеется длинный провод, свернутый в тугую спираль, сечение которой показано на фиг. 13.8. Такая спираль называется соленоидом. На опыте мы наблюдаем, что когда длина соленоида очень велика по сравнению с диаметром, то поле вне его очень мало по сравне­нию с полем внутри. Используя только этот факт и закон Ам­пера, можно найти величину поля внутри.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




5b. Электричество и магнетизм отзывы


Отзывы читателей о книге 5b. Электричество и магнетизм, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x