Ричард Фейнман - 5b. Электричество и магнетизм
- Название:5b. Электричество и магнетизм
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 5b. Электричество и магнетизм краткое содержание
5b. Электричество и магнетизм - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В большинстве жидкостей, не слишком сложных по своему строению, каждый атом в среднем так окружен другими атомами, что можно с хорошей точностью считать его находящимся в сферической полости. И тогда мы спросим: «Чему равно поле в сферической полости?» Мы замечаем, что вырезание сферической дырки в однородном поляризованном диэлектрике равносильно отбрасыванию шарика из поляризованного материала, так что мы можем ответить на этот вопрос. (Мы должны представить себе, что поляризация была «заморожена» до того, как мы вырезали дырку.) Однако в силу принципа суперпозиции поле внутри диэлектрика, до того как оттуда был вынут шарик, есть сумма полей от всех зарядов вне объема шарика плюс полей от зарядов внутри поляризованного шарика.
Фиг. 11.6. Поле в любой точке А диэлектрика можно представить в виде суммы поля сферической дырки и поля сферического вкладыша.
Фиг. 11.7. Электрическое поле однородно поляризованного шарика.
Следовательно, если поле внутри однородного диэлектрика мы назовем Е, то можно записать
E=E дырка+E шарнк,
(11.23)
где E дырка— поле в дырке, а E шарик— поле в однородно поляризованном шарике (фиг. 11.6). Поле однородно поляризованного шарика показано на фиг. 11.7. Электрическое поле внутри шарика однородно и равно
(11.24)
С помощью (11.23) получаем
(11.25)
Поле в сферической полости больше среднего поляна величину Р/Зe 0. (Сферическая дырка дает поле, находящееся на 1/ 3пути от поля параллельной щели к полю перпендикулярной щели.)
§ 5. Диэлектрическая проницаемость жидкостей; формула Клаузиуса — Моссотти
В жидкости мы ожидаем, что поле, поляризующее отдельный атом, скорее похоже на Е дырка, чем просто на Е. Если взять E дыркаиз (11.25) в качестве поляризующего поля, входящего в (11.6), то уравнение (11.8) приобретет вид
(11.26)
или
(11.27)
Вспоминая, что х-1 как раз равна Р/ e 0 Е, получаем
(11.28)
что определяет диэлектрическую проницаемость жидкости и через атомную поляризуемость a . Это формула Клаузиуса — Моссотти.
Если N a очень мало, как, например, для газа (потому что там мала плотность N), то членом N a /3 можно пренебречь по сравнению с 1, и мы получаем наш старый результат — уравнение (11.9), т.е.
(11.29)
Давайте сравним уравнение (11.28) с некоторыми экспериментальными данными. Сначала стоит обратиться к газам, для которых из измерений x можно с помощью уравнения (11.29) найти значение а. Так, для дисульфида углерода при нулевой температуре по Цельсию диэлектрическая проницаемость равна 1,0029, так что N a= 0,0029. Плотность газа легко вычислить, а плотность жидкостей можно найти в справочниках. При 20°C плотность жидкого CS 2в 381 раз выше плотности газа при 0°С, Это значит, что N в 381 раз больше в жидкости, чем в газе, а отсюда (если сделать допущение, что исходная атомная поляризуемость дисульфида углерода не меняется при его конденсации в жидкое состояние) N aв жидкости в 381 раз больше 0,0029, или равно 1,11. Заметьте, что N a /З составляет почти 0,4. С помощью этих чисел мы предсказываем, что величина диэлектрической проницаемости равна 2,76, что достаточно хорошо согласуется с наблюденным значением 2,64.
В табл. 11.1 мы приводим ряд экспериментальных данных по разным веществам, а также значения диэлектрической проницаемости, вычисленной, как только что было описано, no формуле (11.28).
Согласие между опытом и теорией для аргона и кислорода даже лучше, чем для CS 2, и не столь хорошее для четыреххлористого углерода. В целом результаты показывают, что уравнение (11.28) работает с хорошей точностью.
Наш вывод уравнения (11.28) справедлив только для электронной поляризации в жидкостях. Для полярных молекул вроде Н 2O он неверен. Если провести такие же вычисления для воды, то для N a . получим значение 13,2, что означает, что диэлектрическая проницаемость этой жидкости отрицательна, тогда как опытное значение x равно 80. Дело здесь связано с неправильной трактовкой постоянных диполей, и Онзагер указал правильный способ решения. Мы не можем сейчас останавливаться на этом вопросе, но если он вас интересует, то подробно это обсуждается в книге Киттеля «Введение в физику твердого тела».
§ 6. Твердые диэлектрики
Обратимся теперь к твердым телам. Первый интересный факт относительно твердых тел заключается в том, что у них бывает постоянная поляризация, которая существует даже и без приложения внешнего электрического поля. Примеры можно найти у веществ типа воска, который содержит длинные молекулы с постоянным дипольным моментом. Если растопить немного воску и, пока он еще не затвердел, наложить на него сильное электрическое поле, чтобы дипольные моменты частично выстроились, то они останутся в таком положении и после того, как воск затвердеет. Твердое вещество будет обладать постоянной поляризацией, которая остается и в отсутствие поля. Такое вещество называется электретом.
На поверхности электрета расположены постоянные поляризационные заряды. Электрет представляет собой электрический аналог магнита, однако пользы от него гораздо меньше, потому что свободные заряды воздуха притягиваются к его поверхности и в конце концов нейтрализуют поляризационные заряды. Электрет «разряжается» и заметного внешнего поля не создает.
Постоянная внутренняя поляризация Р встречается и у некоторых кристаллических веществ. В таких кристаллах каждая элементарная ячейка решетки обладает одним и тем же постоянным дипольным моментом (фиг. 11.8). Все диполи направлены в одну сторону даже в отсутствие электрического поля. Многие сложные кристаллы обладают такой поляризацией; обычно мы этого не замечаем, потому что создаваемое ими внешнее поле, как и у электретов, разряжается.
Читать дальшеИнтервал:
Закладка: