Ричард Фейнман - 5b. Электричество и магнетизм
- Название:5b. Электричество и магнетизм
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 5b. Электричество и магнетизм краткое содержание
5b. Электричество и магнетизм - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Возвращаясь к нашей простой модели (см. фиг. 11.10, а), мы видим, что поле от одной цепочки будет вызывать поляризацию соседней цепочки в противоположном направлении. Это значит, что, хотя каждая цепочка будет заморожена, постоянная поляризация в единице объема будет равна нулю! (Внешние электрические проявления тут не возникли бы, но можно было бы наблюдать определенные термодинамические эффекты.) Такие системы существуют и называются они антисегнетоэлектриками. Поэтому наше объяснение фактически относилось к антисегнетоэлектрикам. Однако в действительности титанат бария устроен очень похоже на то, что изображено на фиг. 11.10, б. Все кислородо-титановые цепочки поляризованы в одном направлении, потому что между ними помещаются промежуточные цепочки атомов. Хотя атомы в этих цепочках поляризованы не очень сильно и не очень тесно расположены, они все-таки будут немного поляризованы в направлении, антипараллельном кислородо-титановым цепочкам. Небольшие поля, создаваемые у следующей кислородо-титановой цепочки, заставят ее поляризоваться параллельно первой. Поэтому ВаТiO 3на самом деле сегнетоэлектрик, и произошло это благодаря атомам, находящимся в промежутке. Вы можете спросить: «А что же получается с прямым взаимодействием между двумя цепочками О — Ti?» Вспомним, однако, что прямое взаимодействие убывает с расстоянием экспоненциально; действие цепочки из сильных диполей на расстоянии 2а может быть меньше действия цепочки слабых диполей на расстоянии а.
На этом мы закончим довольно подробное изложение наших сегодняшних познаний о диэлектрических свойствах газов, жидкостей и твердых тел.
* Sānger, Steiger, Gachter, Helvetica Physica Acta, 5, 200 (1932).
Имеется перевод: Ч. Киттель, «Введение в физику твердого тела», М., 1962.— Прим. ред.
*По-английски сегнетоэлектричество называется ferroelectricity (ферроэлектричество); этот термин возник по аналогии с ферромагнетизмом: наличие спонтанного момента (электрического в сегнетоэлектриках, магнитного в ферромагнетиках), точки Кюри, гистерезиса и т. п. Однако физическая природа этих групп явлений совершенно различна.— Прим. ред.
Глава 12
ЭЛЕКТРОСТАТИЧЕСКИЕ АНАЛОГИИ
§1. Одинаковые уравнения— одинаковые решения
§2.Поток тепла; точечный источник вблизи бесконечной плоской границы
§3. Натянутая мембрана
§4. Диффузия нейтронов; сферически-симметричный источник в однородной среде
§5. Безвихревое течение жидкости; обтекание шара
§6. Освещение; равномерное освещение плоскости
§7. «Фундаментальное единство» природы
§ 1. Одинаковые уравнения — одинаковые решения
Вся информация о физическом мире, приобретенная со времени зарождения научного прогресса, поистине огромна, и кажется почти невероятным, чтобы кто-то овладел заметной частью ее. Но фактически физик вполне может постичь общие свойства физического мира, не становясь специалистом в какой-то узкой области. Тому есть три причины. Первая. Существуют великие принципы, применимые к любым явлениям, такие, как закон сохранения энергии и момента количества движения. Глубокое понимание этих принципов позволяет сразу постичь очень многие вещи. Вторая. Оказывается, что многие сложные явления, как, например, сжатие твердых тел, в основном обусловливаются электрическими и квантовомеханическими силами, так что, поняв основные законы электричества и квантовой механики, имеется возможность понять многие явления, возникающие в сложных условиях. Третья. Имеется замечательнейшее совпадение: Уравнения для самых разных физических условий часто имеют в точности одинаковый вид. Использованные символы, конечно, могут быть разными — вместо одной буквы стоит другая, но математическая форма уравнений одна и та же. Это значит, что, изучив одну область, мы сразу получаем множество прямых и точных сведений о решениях уравнений для другой области.
Мы закончили электростатику и скоро перейдем к изучению магнетизма и электродинамики. Но прежде хотелось бы показать, что, изучив электростатику, мы одновременно узнали о многих других явлениях. Мы увидим, что уравнения электростатики фигурируют и в ряде других областей физики. Путем прямого переноса решений (одинаковые математические уравнения должны, конечно, иметь одинаковые решения) можно решать задачи из других областей с той же легкостью (или с таким же трудом), как и в электростатике. Уравнения электростатики, как мы знаем, такие:
(12.1)
(12.2}
(Мы пишем уравнения электростатики в присутствии диэлектриков, чтобы учесть общий случай.) То же физическое содержание может быть выражено в другой математической форме:
(12.3)
(12.4)
И вот суть дела заключается в том, что существует множество физических проблем, для которых математические уравнения имеют точно такой же вид. Сюда входит потенциал (j), градиент которого, умноженный на скалярную функцию (x), имеет дивергенцию, равную другой скалярной функции (-r/e 0).
Все, что нам известно из электростатики, можно немедленно перенести на другой объект, и наоборот. (Принцип, конечно, работает в обе стороны: если известны какие-то характеристики другого объекта, то можно использовать эти сведения в соответствующей задаче по электростатике.) Мы рассмотрим ряд примеров из разных областей, когда имеются уравнения такого вида.
§ 2. Поток тепла; точечный источник вблизи бесконечной плоской границы
Ранее мы уже обсуждали (гл. 3, § 4) поток тепла. Вообразите кусок какого-то материала, необязательно однородного (в разных местах может быть разное вещество), в котором температура меняется от точки к точке. Как следствие этих температурных изменений возникает поток тепла, который можно обозначить вектором h. Он представляет собой количество тепловой энергии, которое проходит в единицу времени через единичную площадку, перпендикулярную потоку. Дивергенция h есть скорость ухода тепла из данного места в расчете на единицу объема:
С·h = Скорость ухода тепла на единицу объема.
(Мы могли, конечно, записать уравнение в интегральном виде, как мы поступали в электродинамике с законом Гаусса, тогда оно выражало бы тот факт, что поток через поверхность равен скорости изменения тепловой энергии внутри материала. Мы не будем больше переводить уравнения из дифференциальной формы в интегральную и обратно, это делается точно так же, как в электростатике.)
Читать дальшеИнтервал:
Закладка: