Ричард Фейнман - 5b. Электричество и магнетизм

Тут можно читать онлайн Ричард Фейнман - 5b. Электричество и магнетизм - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    5b. Электричество и магнетизм
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.44/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 5b. Электричество и магнетизм краткое содержание

5b. Электричество и магнетизм - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

5b. Электричество и магнетизм - читать онлайн бесплатно полную версию (весь текст целиком)

5b. Электричество и магнетизм - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Мы ограничимся рассмотрением малых искажений мембраны т е малых изгибов и - фото 121

Мы ограничимся рассмотрением малых искажений мембраны т е малых изгибов и - фото 122

Мы ограничимся рассмотрением малых искажений мембраны, т. е. малых изгибов и наклонов: тогда мы сможем заменить sinq на tgq и записать как дu/дx. Сила при этих условиях дается выражением

Величина в скобках может быть с тем же успехом записана (для малых Dx:) как

5b Электричество и магнетизм - изображение 123

Фиг 125 Поперечное сечение изогнутой пленки Тогда Имеется и другой - фото 124

Фиг. 12.5. Поперечное сечение изогнутой пленки.

Тогда Имеется и другой вклад в D F от сил на двух других сторонах полный - фото 125

Тогда

Имеется и другой вклад в D F от сил на двух других сторо­нах; полный вклад, очевидно, равен

5b Электричество и магнетизм - изображение 126

(12.16)

5b Электричество и магнетизм - изображение 127

Искривления диафрагмы вызваны внешними силами. Пусть / означает направленную вверх силу на единичную площадку пленки (своего рода «давление»), возникающую от внешних сил. Если мембрана находится в равновесии (статический случай), то сила эта должна уравновешиваться только что вычисленной внутренней силой [уравнение (12.16)]. Иначе говоря,

5b Электричество и магнетизм - изображение 128

Уравнение (12.16) тогда может быть записано в виде

(12.17)

5b Электричество и магнетизм - изображение 129

где под знаком Смы теперь подразумеваем, конечно, двух­мерный оператор градиента (д/дх, д/ду). У нас есть дифферен­циальное уравнение, связывающее u(х, у) с приложенными си­лами f(x, у) и поверхностным натяжением пленки t(x, у), которое, вообще говоря, может меняться от места к месту. (Деформации трехмерного упругого тела тоже подчиняются таким уравнениям, но мы ограничимся двухмерным случаем.) Нас будет интересовать только случай, когда натяжение t постоянно по всей пленке. Тогда вместо (12.17) мы можем запи­сать

(12.18)

Снова мы получили такое же уравнение, как в электроста­тике! Но на сей раз оно относится к двум измерениям. Сме­щение u соответствует j, а f/t соответствует r/e 0. Поэтому тот труд, который мы потратили на бесконечные заряженные плос­кости, или параллельные провода большой длины, или заряжен­ные цилиндры, пригодится для натянутой мембраны.

Предположим, мы подтягиваем мембрану в каких-то точках на определенную высоту, т. е. фиксируем величину и в ряде точек. В электрическом случае это аналогично заданию определенного потенциала в соответствующих местах. На­пример, мы можем устроить положительный «потенциал», если подопрем мембрану предметом, который имеет такое же сечение, как и соответствующий цилиндрический проводник. Если, скажем, мы подопрем мембрану круглым стержнем, поверхность примет форму, изображенную на фиг. 12.6.

Фиг 126 Поперечное сечение натянутой резиновой пленки подпертой круглым - фото 130

Фиг. 12.6. Поперечное сечение натянутой рези­новой пленки, подпертой круглым стержнем.

Функция u(х, у) та же, что и потенциал j (х, у) от очень длинного заряженного стержня.

Высота и имеет такой же вид, как электростатический потенциал j заряженного цилиндрического стержня. Она спадает, как ln(1/r). (Наклон поверхности, который соответствует электри­ческому полю Е, спадает, как 1/r.)

Натянутую резиновую пленку часто использовали для ре­шения сложных электрических задач экспериментальным путем. Аналогия используется в обратную сторону! Для подъема мембраны на высоту, соответствующую потенциалам всего набора электродов, подставляют разные стержни и полоски. Затем измерения высоты дают электрический потенциал в электростатической задаче. Аналогия проводится даже еще дальше. Если на мембране поместить маленькие шарики, то их движение примерно схоже с движением электронов в соответ­ствующем электрическом поле. Таким способом можно воочию проследить за движением «электронов» по их траекториям. Этот метод был использован для проектирования сложной системы многих фотоумножительных трубок (таких, например, какие используются в сцинтилляционном счетчике или для управления передними фарами в автомашине кадиллак). Метод используется и до сих пор, но его точность не очень велика. Для более точных расчетов лучше находить поле чис­ленным путем с помощью больших электронных вычислитель­ных машин.

§ 4. Диффузия нейтронов; сферически-симметричный источник в однородной среде

Приведем еще один пример, дающий уравнение того же вида, но на сей раз относящееся к диффузии. В гл. 43 (вып. 4) мы рассмотрели диффузию ионов в однородном газе и диффузию одного газа сквозь другой. Теперь возьмем другой пример — диффузию нейтронов в материале типа графита. Мы выбрали графит (разновидность чистого углерода), потому что углерод не поглощает медленных нейтронов. Нейтроны путешествуют в нем свободно. Они проходят по прямой в среднем несколько сантиметров, прежде чем рассеются ядром и отклонятся в сто­рону. Так что если у нас есть большой кусок графита толщи­ной в несколько метров, то нейтроны, находившиеся сначала в одном месте, будут переходить в другие места.

Фиг 127 Нейтроны рождаются однородно внутри сферы радиуса а в большом - фото 131

Фиг. 12.7. Нейтроны рождаются однородно внутри сферы радиуса а в большом графитовом блоке и диффундируют наружу. Плотность нейтронов N получена как функция r, расстояния от центра источника.

Справа показана электростатическая аналогия: однородно заряженная сфе­ра, причем N соответствует j, а J соответствует Е.

Мы опишем их усредненное поведение, т. е. их средний поток.

5b Электричество и магнетизм - изображение 132

Пусть N(x, у, z)DV — число нейтронов в элементе объема DV в точке (х, у, г). Движение нейтронов приводит к тому, что одни покидают DV, а другие попадают в него. Если в одной области оказывается нейтронов больше, чем в соседней, то от­туда их будет переходить во вторую область больше, чем наобо­рот; в результате возникнет поток. Повторяя доказательства, приведенные в гл. 43 (вып. 4), можно описать поток вектором потока J. Его компонента J x есть результирующее число ней­тронов, проходящих в единицу времени через единичную пло­щадку, перпендикулярную оси х. Мы получим тогда

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




5b. Электричество и магнетизм отзывы


Отзывы читателей о книге 5b. Электричество и магнетизм, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x