LibKing » Книги » sci-phys » Ричард Фейнман - 5. Электричество и магнетизм

Ричард Фейнман - 5. Электричество и магнетизм

Тут можно читать онлайн Ричард Фейнман - 5. Электричество и магнетизм - бесплатно полную версию книги (целиком). Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
libking
  • Название:
    5. Электричество и магнетизм
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.12/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Ваша оценка:

Ричард Фейнман - 5. Электричество и магнетизм краткое содержание

5. Электричество и магнетизм - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

5. Электричество и магнетизм - читать онлайн бесплатно полную версию (весь текст целиком)

5. Электричество и магнетизм - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Если помнить о порядке, то сразу ясно, что Т С это опе­ратор, а произведение С Т — это уже не «жаждущий» опера­тор, его жажда утолена. Это физическая величина, имеющая смысл. Он представляет собой скорость пространственного из­менения Т: x -компонента С Т показывает, насколько быстро Т изменяется в

x-направлении. А куда направлен вектор С Т? Мы знаем, что скорость изменения Т в каком-то направлении — это компонента С Т в этом направлении [см. (2.15)]. Отсюда следует, что направление С Т — это то, по которому С Т обла­дает самой длинной проекцией; иными словами, то, по которому С Т меняется быстрее всего. Направление градиента Т — это направление быстрейшего подъема величины Т.

§ 5. Операции с С

Можно ли с векторным оператором С производить другие алгебраические действия? Попробуем скомбинировать его с век­тором. Из двух векторов можно составить скалярное произве­дение, причем двоякого рода:

(Вектор)·С или С· (Вектор).

Первое выражение пока что ничего не означает — это все еще оператор. Окончательный смысл его зависит от того, на что он Судет действовать. А второе произведение — это некое скаляр­ное поле (потому что А·В — всегда скаляр).

Попробуем составить скалярное произведение С на известное поле скажем на h - фото 52

Попробуем составить скалярное произведение С на извест­ное поле, скажем на h. Распишем покомпонентно

232 233 Эта сумма инвариантна относительно преобразования координат - фото 53

(2.32)

(2.33)

Эта сумма инвариантна относительно преобразования координат Если выбрать - фото 54

Эта сумма инвариантна относительно преобразования координат. Если выбрать другую систему (отмеченную штрихами), то получилось бы

(2.34)

а это — то же самое число, которое получилось бы и из (2.33), хотя с виду оно выглядит иначе, т. е.

5 Электричество и магнетизм - изображение 55

(2.35)

в любой точке пространства. Итак, С·h — это скалярное поле, и оно должно представить собой некоторую физическую вели­чину. Вы должны понимать, что комбинация производных в С·h имеет довольно специальный вид. Могут быть и другие комбинации всяческого вида, скажем dh y /dx, которые не яв­ляются ни скалярами, ни компонентами векторов.

Скалярная величина С· (Вектор) очень широко применяется в физике. Ей присвоили имя «дивергенция», или «расходимость». Например,

С·h = div h = «Дивергенция h». (2.36)

Можно было бы, как и для СT, описать физический смысл С·h. Но мы отложим это до лучших времен.

5 Электричество и магнетизм - изображение 56

Посмотрим сначала, что еще можно испечь из векторного оператора С. Как насчет векторного произведения? Можно на­деяться, что

(2.37)

Компоненты этого вектора можно написать пользуясь обычным правилом для - фото 57

Компоненты этого вектора можно написать, пользуясь обыч­ным правилом для векторного произведения [см. (2.2)]:

(2.38)

Подобно этому,

239 240 Комбинацию СXh называют ротор пишут rot h или редко вихрь - фото 58

239 240 Комбинацию СXh называют ротор пишут rot h или редко вихрь - фото 59

(2.39)

(2.40)

Комбинацию СXh называют «ротор» (пишут rot h), или (редко) «вихрь h» (пишут curl h).Происхождение этого назва­ния и физический смысл комбинации мы обсудим позже.

В итоге мы получили три сорта комбинаций, куда входит С:

С Т = grad T = Вектор,

С·h=divh = Скаляр,

СXh = roth = Вектор.

Используя эти комбинации, можно пространственные вариации полей записывать в удобном виде, т. е. в виде, не зависящем от той или иной совокупности осей координат.

В качестве примера применения нашего векторного диф­ференциального оператора С выпишем совокупность вектор­ных уравнений, в которой содержатся те самые законы электро­магнетизма, которые мы словесно высказали в гл. 1. Их назы­вают уравнениями Максвелла.

Уравнения Максвелла 241 где r ро плотность электрического заряда - фото 60

Уравнения Максвелла

(2.41)

где r (ро) — «плотность электрического заряда» (количество заряда в единице объема), a j — «плотность электрического тока» (скорость протекания заряда сквозь единицу площади). Эти четыре уравнения содержат в себе законченную классиче­скую теорию электромагнитного поля. Видите, какой элегант­ной и простой записи мы добились с помощью наших новых обозначений!

§ 6. Дифференциальное уравнение потока тепла

Приведем другой пример векторной записи физического закона. Этот закон не из точных, но во многих металлах и других материалах, проводящих тепло, он проявляется со­вершенно четко. Известно, что если взять плиту из какого-то материала и нагреть одну ее сторону до температуры Т 2 , а дру­гую охладить до Т 1 , то тепло потечет от T 2 к Т 1 (фиг. 2.7, а). Поток тепла пропорционален площади торцов А и разнице температур. Кроме того, он обратно пропорционален расстоя­нию между торцами. (Для заданной разницы температур чем тоньше плита, тем мощнее поток тепла.).

Фиг 27 Тепловой поток через плиту а и бесконечно малая плитка - фото 61

Фиг. 2.7. Тепловой по­ток через плиту (а) и бесконечно малая плит­ка, параллельная изо­термической поверхно­сти в большом блоке вещества (б).

Обозначая через J тепловую энергию проходящую сквозь плиту за единицу - фото 62

Обозначая через J тепловую энергию, проходящую сквозь плиту за единицу вре­мени, мы напишем

Что произойдет в более сложных случаях, скажем, в блоке материала необычной формы, в котором температура как-то прихотливо меняется? Рассмотрим тонкий слой материала и представим себе плиту наподобие изображенной на фиг. 2.7, а, но в миниатюре. Ориентируем ее торцы параллельно изотерми­ческим поверхностям (фиг. 2.7, б), так что для этой малой плиты выполняется уравнение (2.42).

5 Электричество и магнетизм - изображение 63

Если площадь этой плиты DА, то поток тепла за единицу времени равен

(2.42)

Коэффициент пропорциональности c (каппа) называется тепло­проводностью.

5 Электричество и магнетизм - изображение 64

(2.43)

где Ds — толщина плиты. Но D J /DA мы раньше определили как абсолютную величину h— вектора, направленного туда, куда течет тепло. Тепло течет от T 1+ DT к T 1 , так что вектор hперпендикулярен изотермам (фиг. 2.7, б). Далее, DТ/Ds как раз равно быстроте изменения Т с изменением положения. А по­скольку изменения положения перпендикулярны изотермам, то наше AT/As — это максимальная скорость изменения. Она равна поэтому величине у Т. И, наконец, раз направления СТ и h противоположны, то (2.43) можно записать в виде вектор­ного уравнения

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




5. Электричество и магнетизм отзывы


Отзывы читателей о книге 5. Электричество и магнетизм, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Большинство книг на сайте опубликовано легально на правах партнёрской программы ЛитРес. Если Ваша книга была опубликована с нарушениями авторских прав, пожалуйста, направьте Вашу жалобу на PGEgaHJlZj0ibWFpbHRvOmFidXNlQGxpYmtpbmcucnUiIHJlbD0ibm9mb2xsb3ciPmFidXNlQGxpYmtpbmcucnU8L2E+ или заполните форму обратной связи.
img img img img img