Ричард Фейнман - 4a. Кинетика. Теплота. Звук

Тут можно читать онлайн Ричард Фейнман - 4a. Кинетика. Теплота. Звук - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    4a. Кинетика. Теплота. Звук
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.56/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 4a. Кинетика. Теплота. Звук краткое содержание

4a. Кинетика. Теплота. Звук - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

4a. Кинетика. Теплота. Звук - читать онлайн бесплатно полную версию (весь текст целиком)

4a. Кинетика. Теплота. Звук - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Можно отметить еще одну, третью сторону этого интерес­ного открытия: оно касается двух нот, которые звучат приятно для слуха. Но далеко ли ушли мы от Пифагора в понимании того, почему только некоторые звуки приятны для слуха? Общая теория эстетики, по-видимому, ненамного продвинулась со времен Пифагора. Итак, одно это открытие греков имеет три аспекта: эксперимент, математические соотношения и эстетику. Физики пока добились успеха только в первых двух. В этой главе мы расскажем о современном понимании открытия Пифагора.

Среди звуков, которые мы слышим, есть такой сорт, кото­рый называется шумом. Ему соответствуют какие-то нерегу­лярные колебания барабанной перепонки уха, вызванные не­регулярными колебаниями находящихся поблизости объектов. Если начертить диаграмму зависимости давления воздуха на барабанную перепонку (а следовательно, и перемещения ее) от времени, то график, соответствующий шуму, будет выглядеть так, как это изображено на фиг. 50.1,а.

Фиг 501 Давление как функция времени а для шума б для музыкального - фото 54

Фиг. 50.1. Давление как функция времени.

адля шума; б — для му­зыкального звука.

(Такой шум может например, вызвать топанье ногой.) А музыкальный звук имеет другой характер. Музыка характеризуется наличием более или менее длительных тонов, или музыкальных «нот». (Кстати, музыкальные инструменты тоже умеют производить шум!)

Тон может длиться сравнительно недолго, например когда мы ударяем по клавише фортепьяно, или неопределенно дол­го, когда, скажем, флейтист берет длинную ноту.

В чем состоит особенность музыкальной ноты с точки зре­ния давления воздуха? Музыкальный звук отличается от шума тем, что график его периодичен. Форма колебаний давления воздуха со временем пусть даже какая-то неправильная, но она должна повторяться снова и снова. Пример зависимости дав­ления от времени для музыкального звука показан на при­веденной выше фиг. 50.1.б.

Обычно музыканты, говоря о музыкальном тоне, опреде­ляют три его характеристики — громкость, высоту и «каче­ство». «Громкость», как известно, определяется величиной из­менения давления. «Высоте» соответствует период времени повторения основной формы давления («низкие» ноты имеют более длинный период, нежели «высокие»). А под «качеством» тона понимается разница, которую мы способны уловить между двумя нотами одинаковой громкости и высоты. Мы прекрасно различаем звучание гобоя, скрипки или сопрано, даже если высота издаваемых ими звуков кажется одинаковой. Здесь уже дело идет о структуре периодически повторяющейся формы.

Давайте кратко рассмотрим звук, производимый вибри­рующей струной.

Если оттянуть струну, а затем отпустить ее, то последую­щее движение будет определяться волнами, которые мы воз­будили. Эти волны, как вы знаете, пойдут в обоих направле­ниях по струне, а затем отразятся от ее концов. Так они будут бегать взад и вперед довольно долго. И сколь бы сложны ни были эти волны, они будут повторяться периодиче­ски снова и снова.

Период этих повторений равен просто времени T, которое требуется волне, чтобы пробежать дважды всю длину струны. Ведь это как раз то время, которое необходимо для того, чтобы любая волна, отразившись от каждого конца, вернулась в начальное положение и продолжала движение в первона­чальном направлении. Время, необходимое для того, чтобы волна достигла конца струны в любом направлении, оди­наково. Каждая точка струны после целого периода воз­вращается в свое исходное положение, затем опять отклоняется от него и снова, спустя период, возвращается, и т. д.

Возникающий при этом звук тоже должен повторять те же колебания; вот почему мы, тронув струну, получаем музыкаль­ный звук.

§ 2. Ряд Фурье

В предыдущей главе мы познакомились с другой точкой зрения на колеблющуюся систему. Мы видели, что в струне воз­никают различные собственные гармоники и что любое частное колебание, которое только возможно получить из начальных условий, можно рассматривать как составленную в надлежащей пропорции комбинацию нескольких одновременно осциллирую­щих собственных гармоник. Для струны мы нашли, что соб­ственные гармоники имеют частоты w 0, 2w 0, Зw 0, .... Поэтому наиболее общее движение струны складывается из синусои­дальных колебаний основной частоты w 0, затем второй гармо­ники 2w 0, затем третьей гармоники Зw 0и т. д. Основная гармо­ника повторяется через каждый период T 1=2p/w 0, вторая гар­моника — через каждый период T 2=2p/2w 0; она повторяется также и через каждый период Т 1 =2Т 2 , т. е. после двух своих периодов. Точно таким же образом через период Т 1 повторяется и третья гармоника. В этом отрезке укладываются три ее перио­да. И снова мы понимаем, почему задетая струна через период t 1 полностью повторяет форму своего движения. Так получает­ся музыкальный звук.

До сих пор мы говорили о движении струны. Однако звук, который представляет собой движение воздуха, вызванное дви­жением струны, тоже должен состоять из тех же гармоник, хотя здесь мы уже не можем говорить о собственных гармониках воздуха. К тому же относительная сила различных гармоник в воздухе может быть совсем другой, чем в струне, особенно если струна «связана» с воздухом посредством «звучащей дос­ки». Разные гармоники по-разному связаны с воздухом.

Если для музыкального тона функция f(t) представляет давление воздуха в зависимости от времени (скажем, такая, как на фиг. 50.1.б), то можно ожидать, что f(t) записывается в виде суммы некоторого числа простых гармонических функ­ций от времени (подобных cosw t) для каждой из различных гармонических частот. Если период колебаний равен Т, то основная угловая частота будет w =2 p /Т, а следующие гармо­ники будут 2w, Зw и т. д.

Здесь появляется небольшое усложнение. Мы не вправе ожидать, что для каждой частоты начальные фазы обязательно будут равны друг другу. Поэтому нужно пользоваться функ­циями типа cos(wt+j). Вместо этого, однако, проще исполь­зовать для каждой частоты как синус, так и косинус. Напом­ним, что

cos w t+ j)=cosjcosw t- sinjsinw t, (50.1)

а поскольку j — постоянная, то любые синусоидальные коле­бания с частотой w могут быть записаны в виде суммы членов, в один из которых входит sinwt, а в другой — cos w t.

Итак, мы приходим к заключению, что любая периодиче­ская функция f(t) с периодом Т математически может быть за­писана в виде

где w2pT a a и b числовые постоянные указывающие с каким весом каждая - фото 55

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




4a. Кинетика. Теплота. Звук отзывы


Отзывы читателей о книге 4a. Кинетика. Теплота. Звук, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x