Ричард Фейнман - 3a. Излучение. Волны. Кванты

Тут можно читать онлайн Ричард Фейнман - 3a. Излучение. Волны. Кванты - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    3a. Излучение. Волны. Кванты
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.13/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 3a. Излучение. Волны. Кванты краткое содержание

3a. Излучение. Волны. Кванты - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

3a. Излучение. Волны. Кванты - читать онлайн бесплатно полную версию (весь текст целиком)

3a. Излучение. Волны. Кванты - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Фиг 384 Рассеяние волн плоскостями кристалла Фиг 385 Дифракция - фото 117

Фиг. 38.4. Рассеяние волн плоскостями кристалла.

Фиг 385 Дифракция рентгеновских лучей на кристаллах каменной соли - фото 118

Фиг. 38.5. Дифракция рентге­новских лучей на кристаллах каменной соли.

Интересно, что настоящие кристаллы обычно не столь прос­ты,— это не одинаковые атомы, повторяющиеся по определен­ному закону. Они скорее похожи, если прибегнуть к двумер­ной аналогии, на обои, на которых повторяется один и тот же сложный узор. Для атомов «узор» — это некоторая их расста­новка, куда может входить довольно большое число атомов; скажем, для углекислого кальция — атомов кальция, углеро­да и трех атомов кислорода. Важно не то, каков рисунок, а то, что он повторяется.

Этот основной рисунок называется ячейкой, а способ пов­торения определяет тип решетки; тип решетки можно сразу определить, взглянув на отражения и рассмотрев их симметрию. Другими словами, от типа решетки зависит, где не будет отра­жения (лучей от кристалла), но чтобы узнать, что стоит в каж­дой ячейке, надо учесть и интенсивность рассеяния по тем или иным направлениям. Направления рассеяния зависят от типа ре­шетки, а сила рассеяния определяется тем, что находится внутри каждой ячейки; этим способом и было изучено строение крис­таллов.

Две фотографии дифракции рентгеновских лучей даны на фиг. 38.5 и 38.6.

Занятная вещь получается с рассеянием, когда промежутки между ближайшими плоскостями меньше l/2. В этом случае уравнение (38.9) вообще не имеет решений ни для одного п. Выходит, когда l больше двойного промежутка между примы­кающими плоскостями, то никаких боковых дифракционных пятнышек нет и свет (и не только свет, а все, что хотите) прямо проходит через вещество.

Фиг 386 Дифракция рентгеновских лучей на миоглобине Фиг 387 Диффузия - фото 119

Фиг. 38.6. Дифракция рентгеновских лучей на миоглобине.

Фиг 387 Диффузия нейтронов из котла сквозь графитовый блок Проходит не - фото 120

Фиг. 38.7. Диффузия нейтронов из котла сквозь графитовый блок

Проходит, не отражаясь, не рассеи­ваясь, не теряясь. В частности, свет (у него l много больше этих промежутков) проходит, не давая никакой картины отра­жений от кристаллических плоскостей.

Интересные следствия этого явления наблюдаются в урано­вых реакторах — источниках нейтронов (нейтроны — это, уж бесспорно, частицы, спросите у кого угодно!). Если пустить эти самые частицы-нейтроны через длинный блок графита, то они начнут рассеиваться и с трудом будут протискиваться в глубь блока (фиг. 38.7). Рассеиваются они из-за того, что отскакивают от атомов. Но строго говоря, согласно волновой теории, все обстоит как раз наоборот — они отскакивают от ато­мов из-за дифракции от кристаллических плоскостей. Оказывает­ся, что если взять длинный стержень графита, то у всех нейт­ронов, выходящих из его дальнего конца, окажется большая длина волны! Если нанести на график интенсивность нейтро­нов как функцию длины волны, то на нем изобразятся только длины волн выше некоторого минимума (фиг. 38.8). Значит, таким путем можно получить очень медленные нейтроны. Про­никают сквозь графит только самые медленные нейтроны, они не дифрагируют, не рассеиваются на кристаллических плоскос­тях графита, а спокойно проходят, как свет через стекло. И нет никакого рассеяния по сторонам. Существует и множество других доказательств реальности нейтронных волн и волн других частиц.

Фиг 388 Интенсивность нейтронов выходящих us стержня графита как функция - фото 121

Фиг. 38.8. Интенсивность нейтро­нов, выходящих us стержня гра­фита, как функция длины волны.

§ 4. Размер атома

Рассмотрим еще одно применение принципа неопределен­ности (38.3), но только, пожалуйста, не воспринимайте этот расчет чересчур буквально; общая мысль правильна, но ана­лиз проделан не очень аккуратно. Мысль эта касается опре­деления размера атомов; ведь по классическим воззрениям электроны должны были бы излучать свет и, крутясь по спирали, упасть на поверхность ядра. Но, согласно кван­товой механике, это невозможно, потому что в противном случае мы бы знали, где очутился электрон и насколько быстро он вертится.

Допустим, имеется атом водорода и мы измеряем положение электрона; мы не должны быть в состоянии предвидеть точно, где он окажется, иначе расплывание импульса станет беско­нечным. Всякий раз, как мы смотрим на электрон, он где-ни­будь оказывается; у него есть амплитуда вероятности оказаться в различных местах, так что есть вероятность найти его где угодно. Однако не все эти места должны быть возле самого ядра; положим, что существует разброс в расстояниях поряд­ка а, т. е. расстояние от ядра до электрона примерно в сред­нем равно а. Определим а, потребовав, чтобы полная энергия атома оказалась минимальной.

Разброс в импульсах, в согласии с соотношением неопре­деленностей, должен быть равен примерно h/а; поэтому, стре­мясь измерить как-нибудь импульс электрона (например, рас­сеивая на нем фотоны и наблюдая эффект Допплера от движу­щегося рассеивателя), мы не будем получать все время нуль (электрон не стоит на месте), а будем получать импульсы поряд­ка р» h/ а. Кинетическая энергия электронов примерно будет равна 1/ 2mv 2= Р 2/2m = h 2/2ma 2. (To, что мы сейчас делаем, в каком-то смысле есть анализ размерностей: мы прикидываем, как кинетическая энергия может зависеть от постоянной План­ка h, массы т и размера атома а. Ответ получается с точностью до численных множителей типа 2, p и т. д. Мы даже не опреде­лили как следует а.) Далее, потенциальная энергия равна част­ному от деления минус е 2 на расстоянии от центра, скажем, е 2/а (как мы помним, е 2 это квадрат заряда электрона, деленный на 4pe 0). Теперь смотрите: когда а уменьшается, то потенциальная энергия тоже уменьшается, но чем меньше а, тем больше требуемый принципом неопределенности импульс и тем больше кинетическая энергия. Полная энергия равна

3810 Мы не знаем чему равно а но зато мы знаем что атом обеспечивая свое - фото 122

(38.10)

Мы не знаем, чему равно а, но зато мы знаем, что атом, обеспечивая свое существование, вынужден идти на компромисс, с тем чтобы полная энергия его была как можно меньше. Чтобы найти минимум Е, продифференцируем его по а, по­требуем равенства производной нулю и найдем а. Производ­ная Е равна

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




3a. Излучение. Волны. Кванты отзывы


Отзывы читателей о книге 3a. Излучение. Волны. Кванты, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x