Ричард Фейнман - 3. Излучение. Волны. Кванты

Тут можно читать онлайн Ричард Фейнман - 3. Излучение. Волны. Кванты - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    3. Излучение. Волны. Кванты
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 3. Излучение. Волны. Кванты краткое содержание

3. Излучение. Волны. Кванты - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

3. Излучение. Волны. Кванты - читать онлайн бесплатно полную версию (весь текст целиком)

3. Излучение. Волны. Кванты - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Фиг 294 Количество энергии протекающей внутри конуса OABCD не зависит от - фото 56

Фиг. 29.4. Количество энергии, протекающей внутри конуса OABCD, не зависит от расстоя­ния r, на котором оно измеряется.

Закон спадания поля Е как 1/r эквивалентен утверждению, что имеется поток энергии, ко­торый нигде не теряется; при этом энергия распространяется на все большие и большие области пространства. Таким образом, заряд, колеблясь, безвозвратно теряет энергию, уходящую все дальше и дальше. Заряд не может вернуть излученную энергию с тех расстояний, где применимо наше рассмотрение; для доста­точно больших расстояний от источника вся излученная энер­гия уходит прочь. Конечно, энергия не исчезает бесследно и ее можно поглотить с помощью других систем. Потери энергии на излучение мы будем изучать в гл. 32.

Рассмотрим теперь более подробно волны вида (29.3) как функции времени в данном месте и как функции расстояния в данный момент времени. Как и раньше, будем отвлекаться от постоянных множителей и множителя 1/r.

§ 3. Синусоидальные волны.

Зафиксируем вначале r и рассмотрим поле как функцию времени. Получается функция, которая осциллирует с угловой частотой w. Угловую частоту со можно определить как скорость изменения фазы со временем (радианы в секунду). Эта величина нам уже знакома. Период есть время одного колебания, одного полного цикла; он равен 2p/w, так как произведение w и периода есть полный период косинуса.

Введем новую величину, которая очень часто используется в физике. Она возникает в другой ситуации, когда t фиксиро­вано и волна рассматривается как функция расстояния r. Легко увидеть, что как функция r волна (29.3) тоже осциллирует. Если отвлечься от множителя 1/r, то мы видим, что Е тоже осцилли­рует, когда мы меняем положение. Тогда по аналогии с w введем

так называемое волновое число и обозначим его через k. Оно опре­деляется как скорость изменения фазы с расстоянием (радианы на метр). Время при таком изменении остается фиксированным. Роль периода здесь играет другая величина, ее можно было бы назвать периодом в пространстве, однако ее обычное назва­ние — длина волны, а обозначается она буквой l . Длина волны есть расстояние, на котором колебание поля совершает один полный цикл. Легко видеть, что длина волны равна 2p/k,потому что k, умноженное на длину волны, равно полному периоду ко­синуса. Итак, соотношение kl=2p полностью аналогично

wt 0 =2p.

В нашем конкретном случае между частотой и длиной волны имеется определенная связь, однако приведенные выше опре­деления k и w носят совершенно общий характер и применимы также в тех физических условиях, когда никакого соотношения между этими величинами нет. Для рассматриваемой нами волны скорость изменения фазы с расстоянием найти легко. В самом деле, запишем выражение для фазы j=w(t-r/с) и возьмем частную производную по r

294 Это соотношение можно записать разными способами Почему длина волны - фото 57(29.4)

Это соотношение можно записать разными способами:

Почему длина волны оказывается равной периоду умноженному на c Очень просто - фото 58

Почему длина волны оказывается равной периоду, умножен­ному на c? Очень просто. Дело в том, что за время, равное одному периоду, волны, двигаясь со скоростью с, пройдут расстояние ct 0 , а, с другой стороны, это расстояние должно быть равно длине волны.

В других физических явлениях, когда приходится иметь дело не со светом, такого простого соотношения между k и w может и не быть. Пусть волна движется вдоль оси x , тогда распространение синусоидальной волны с частотой w и волновым числом k описывается общей формулой вида sin(wt- kx).

Введенное понятие длины волны позволяет уточнить пределы применимости формулы (29.1). Напомним, что поле складывается из нескольких частей: одна из них спадает как 1/r , другая — как 1/r 2, а остальные падают с расстоянием еще быстрее. Имеет смысл выяснить: когда часть, спадающая по закону 1/r , наибо­лее существенна, а остальными можно пренебречь? Естественно ответить: «Когда мы отойдем достаточно далеко от источника, потому что член 1/г 2будет мал по сравнению с членом 1/r». Но что значит «достаточно далеко»? В общих чертах ответ таков: все остальные члены имеют порядок величины l/rпо сравнению с первым членом 1/г. Так что когда мы находимся на расстоянии нескольких длин волн от источника, формула (29.1) описывает поле в хорошем приближении. Область, удаленную от источника на расстояние, превышающее несколько длин волн, иногда называют «волновой зоной».

§ 4. Два дипольных излучателя

Рассмотрим теперь результирующее поле, которое возникает при одновременном действии двух осцилляторов. В предыдущей главе уже разбиралось несколько наиболее простых случаев. Мы дадим сначала качественную картину явления, а затем опи­шем те же эффекты с количественной точки зрения. Возьмем простейший случай, когда осцилляторы и детектор расположены в одной горизонтальной плоскости, а колебания осцилляторов происходят в вертикальном направлении.

На фиг. 29.5,а показан вид обоих осцилляторов сверху; в данном случае расстояние между ними в направлении север — юг равно половине длины волны и колеблются они в одной фазе, т.е. разность фаз осцилляторов равна нулю. Нас интересует интенсивность излучения в разных направлениях. Под интен­сивностью мы подразумеваем количество энергии, проходящей мимо нас в 1 сек; оно пропорционально квадрату напряженности поля, усредненному по времени. Так, для определения яркости света нужно взять квадрат напряженности электрического поля, а не саму напряженность. (Напряженность электрического поля характеризуется силой, с которой поле действует на неподвиж­ный заряд, а количество энергии, проходящей через некоторую площадку, пропорционально квадрату напряженности поля и измеряется в ваттах на квадратный метр. Коэффициент пропорциональности будет выведен в следующей главе.)

Фиг 295 Зависимость интенсивности излучения двух диполей находящихся на - фото 59

Фиг. 29.5. Зависимость интен­сивности излучения двух диполей, находящихся на расстоянии в по­ловину длины, волны, от направле­ния излучения.

aдиполи в фазе (a=0); 6 — диполи в противофаэе ( a =p).

Если мы на­ходимся к западу от системы осцилляторов, к нам от обоих осцил­ляторов приходят поля, одинаковые по величине и с одной фа­зой, так что суммарное электрическое поле в два раза больше поля отдельного осциллятора. Следовательно, интенсивность будет в четыре раза больше интенсивности, возникающей от действия только одного осциллятора. (Числа на фиг. 29.5 ука­зывают интенсивность, причем за единицу измерения выбрана интенсивность излучения одного осциллятора, помещенного в начале координат.) Пусть теперь поле измеряется в северном или южном направлении, вдоль линии осцилляторов. Поскольку расстояние между осцилляторами равно половине длины волны, их поля излучения различаются по фазе ровно на полцикла, а следовательно, суммарное поле равно нулю. Для промежуточ­ного угла (равного 30°) интенсивность равна 2, т. е., уменьшаясь, интенсивность последовательно принимает значения 4, 2, 0 и т. д. Нам нужно научиться находить интенсивность для разных углов. По существу, это сводится к задаче о сложении двух ко­лебаний с разными фазами.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




3. Излучение. Волны. Кванты отзывы


Отзывы читателей о книге 3. Излучение. Волны. Кванты, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x