Ричард Фейнман - 3. Излучение. Волны. Кванты

Тут можно читать онлайн Ричард Фейнман - 3. Излучение. Волны. Кванты - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    3. Излучение. Волны. Кванты
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 3. Излучение. Волны. Кванты краткое содержание

3. Излучение. Волны. Кванты - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

3. Излучение. Волны. Кванты - читать онлайн бесплатно полную версию (весь текст целиком)

3. Излучение. Волны. Кванты - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Давайте коротко рассмотрим еще несколько интересных случаев. Пусть расстояние между осцилляторами, как и раньше, равно половине длины волны, но колебания одного осциллятора отстают по фазе от колебаний другого на половину периода (см. фиг. 29.5, б). Интенсивность в горизонтальном направле­нии (западном или восточном) обращается в нуль, потому что один осциллятор «толкает» в одном направлении, а другой — в обратном. В северном направлении сигнал от ближайшего осциллятора приходит на полпериода раньше сигнала от даль­него осциллятора. Но последний запаздывает в своих колебаниях как раз на полпериода, так что оба сигнала приходят одновре­менно, и интенсивность в северном направлении равна 4. Интен­сивность под углом 30°, как будет показано позже, снова равна 2.

Теперь мы подошли к одному интересному свойству, весьма полезному на практике. Заметим, что фазовые соотношения меж­ду осцилляторами используются при передаче радиоволн. До­пустим, мы хотим направить радиосигнал на Гавайские острова. Используем для этого систему антенн, расположенную так, как показано на фиг. 29.5, а, и установим между ними нулевую разность фаз. Тогда максимальная интенсивность будет идти как раз в нужном направлении, поскольку Гавайские острова лежат на западе от США. На следующий день мы решим переда­вать сигналы уже в Канаду. А поскольку Канада находится на севере, нам надо только изменить знак одной из антенн, чтобы антенны находились в противофазе, как на фиг. 29.5, б, и передача пойдет на север. Можно придумать разные устройства системы антенн

Фиг 296 Две диполъные антенны дающие максимум излучения в одном - фото 60

Фиг. 29.6. Две диполъные антен­ны, дающие максимум излучения в одном направлении.

Наш способ—один из самых простых; мы можем значительно усложнить систему и, выбрав нужные фазовые соотношения, послать пучок с максимальной интенсивностью в требуемом направлении, даже не сдвинув с места ни одну из антенн! Однако в обеих радиопередачах мы затрачивали много энергии зря, она уходила в прямо противоположном направ­лении; интересно знать, есть ли способ посылать сигналы только в одном направлении? На первый взгляд кажется, что пара антенн такого типа будет всегда излучать симметрично. На самом деле картина гораздо разнообразнее; рассмотрим для при­мера случай несимметричного излучения двух антенн.

Пусть расстояние между антеннами равно четверти длины волны и северная антенна отстает от южной по фазе на четверть периода. Что у нас тогда получится (фиг. 29.6)? Как мы дальше покажем, в западном направлении интенсивность равна 2. В южном направлении получится нуль, потому что сигнал от северного источника N приходит на 90° позже сигнала от южного источника S и, кроме того, он отстает по фазе еще на 90°; в ре­зультате полная разность фаз есть 180° и суммарный эффект равен нулю. В северном направлении сигнал от источника N приходит на 90° раньше сигнала от S, поскольку источник N на четверть волны ближе. Но разность фаз равна 90° и компен­сирует задержку во времени, поэтому оба сигнала приходят с одной фазой, что дает интенсивность, равную 4.

Таким образом, проявив некоторую изобретательность в расположении антенн и выбрав нужные сдвиги фаз, можно на­править энергию излучения в одном направлении. Правда, энер­гия будет

все-таки испускаться в довольно большой интервал углов. А можно ли сфокусировать излучение в более узкий ин­тервал углов? Обратимся снова к передаче волн на Гавайские острова; там радиоволны шли на запад и на восток в широком диапазоне углов и даже на угол 30° интенсивность была все­го вдвое меньше максимальной, энергия расходовалась впу­стую.

Можно ли улучшить это положение? Рассмотрим случай, когда расстояние между источниками равно десяти длинам волн (фиг. 29.7), а разность фаз колебаний равна нулю. Это ближе к ситуации, описанной ранее,

когда мы экспериментировали с интервалами, равными нескольким длинам волн, а не малым

долям длины волны.

Фиг 297 Распределение интенсивности двух диполей находящихся на - фото 61

Фиг. 29.7. Распределение интен­сивности двух диполей, находя­щихся на расстоянии 10l друг от друга.

Здесь иная картина.

Если расстояние между источниками равно десяти длинам волн (мы выбираем более легкий случай, когда они находятся в фазе), то в западном и восточном направлениях интенсивность максимальна и равна 4. Если же сдвинуться на небольшой угол, разность фаз станет равной 180° и интенсивность обратится в нуль. Более строго: если мы проведем прямые от каждого осцил­лятора до точки наблюдения и вычислим разность расстояний до осцилляторов D, причем D окажется равным l/2, то оба сигнала будут в противофазе и суммарный эффект равен нулю. Этому на­правлению отвечает первый нуль на фиг. 29.7 (масштаб на рисун­ке не выдержан, это, по существу, грубая схема). Это означает, что мы получаем узкий луч в нужном направлении; если же мы чуть сдвигаемся в сторону, интенсивность исчезает. Для прак­тических целей, к сожалению, такие передающие системы имеют существенный недостаток: при некотором угле расстояние D может стать равным l и тогда оба сигнала снова окажутся в фазе! В результате получается картина с чередующимися мак­симумами и минимумами, точь-в-точь как в гл. 28 для расстоя­ния между осцилляторами, равного 2,5l.

Как избавиться от всех лишних максимумов? Существует довольно интересный способ устранения нежелательных макси­мумов. Поместим между нашими двумя антеннами целый ряд других (фиг. 29.8). Пусть расстояние между крайними по-прежнему равно 10l, а через каждые 2l поставим по антенне и настроим все антенны на одну фазу. Всего у нас будет, таким образом, шесть антенн, и интенсивность в направлении запад — восток, конечно, сильно возрастет по сравнению с интенсивностью от одной антенны. Поле увеличится в шесть раз, а интенсивность, определяемая квадратом поля,— в трид­цать шесть раз. Поблизости от направления запад — восток, как и раньше, возникнет направление с нулевой интенсив­ностью, а дальше, там, где мы ожидали увидеть высокий мак­симум, появится всего лишь небольшой «горб». Попробуем разобраться, почему так происходит.

Фиг 298 Устройство из шести дипольных антенн и часть распределения - фото 62

Фиг. 29.8. Устройство из шести дипольных антенн и часть распределения интенсивности его излучения.

Причина появления максимума, казалось бы, по-прежнему существует, поскольку D может равняться длине волны, и осцилляторы 1 и 6, находясь в фазе, взаимно усиливают свои сигналы. Но осцилляторы 3 и 4 оказываются не в фазе с осцилля­торами 1 и 6, отличаясь от них по фазе приблизительно на поло­вину длины волны, и вызывают обратный эффект по сравнению с этими осцилляторами. Поэтому интенсивность в данном на­правлении оказывается малой, хотя и не равной точно нулю. В результате возникает мощный луч в нужном направлении и ряд небольших побочных максимумов. Но в нашем частном примере есть одна добавочная неприятность: поскольку расстоя­ние между соседними диполями равно 2 l, можно найти угол, для которого разность хода s лучей от соседних диполей в точ­ности равна длине волны. Сигналы от соседних осцилляторов будут отличаться на 360°, т. е. снова окажутся в фазе, и в этом направлении мы получим еще один мощный пучок радиоволн! На практике этого эффекта легко избежать, если выбрать расстояние между осцилляторами меньше одной длины волны. Само же возникновение добавочных максимумов при расстоя­нии между осцилляторами более одной длины волны очень ин­тересно и важно, но не для передачи радиоволн, а для дифракционных решеток.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




3. Излучение. Волны. Кванты отзывы


Отзывы читателей о книге 3. Излучение. Волны. Кванты, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x