Ричард Фейнман - 3. Излучение. Волны. Кванты

Тут можно читать онлайн Ричард Фейнман - 3. Излучение. Волны. Кванты - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    3. Излучение. Волны. Кванты
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 3. Излучение. Волны. Кванты краткое содержание

3. Излучение. Волны. Кванты - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

3. Излучение. Волны. Кванты - читать онлайн бесплатно полную версию (весь текст целиком)

3. Излучение. Волны. Кванты - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

С ростом фазы j отношение двух синусов падает и обращается в нуль в первый раз при nj/2 = p, поскольку sinp=0. Дру­гими словами, значение j=2p /n отвечает первому минимуму кривой (фиг. 30.2). С точки зрения векторов на фиг. 30.1 первый минимум возникает в том случае, когда стрелки векторов воз­вращаются в исходную точку, при этом полная разность фаз от первого до последнего осциллятора равна 2л.

Перейдем к следующему максимуму и покажем, что он дей­ствительно, как мы и ждали, много меньше первого. Для точ­ного определения положения максимума необходимо учитывать, что и числитель, и знаменатель в (30.3) оба меняются с измене­нием j. Мы не станем этого делать, поскольку при большом n sinj/2 меняется медленнее sinj/2 и условие sinj/2 =1 дает положение максимума с большой точностью. Макси­мум sin 2nj/2 достигается при nj/2=Зp/2 или j= Зp/n. Это озна­чает, что стрелки векторов описывают полторы окружности.

Подставляя j=3p/n, получаем sin 23p/2=l в числителе (30.3) (с этой целью и был выбран угол j) и sin 23n/2n в знамена­теле. Для достаточно большого n можно заменить синус его аргументом: sin Зp/2n =3p/2n. Отсюда интенсивность во втором максимуме оказывается равной I=I 0(4n 2/9p 2). Но n 2I 0— не что иное, как интенсивность в первом максимуме, т. е. интенсив­ность второго максимума получается равной 4/9p 2от максималь­ной, что составляет 0,047, или меньше 5%! Остальные макси­мумы, очевидно, будут еще меньше. Таким образом, возникает очень узкий основной максимум и очень слабые дополнительные максимумы по обе стороны от основного.

Фиг 302 Зависимость интенсивности от фазового угла для большого числа - фото 78

Фиг 302 Зависимость интенсивности от фазового угла для большого числа - фото 79

Фиг. 30.2. Зависимость интенсивности от фазово­го угла для большого числа осцилляторов с одинаковыми амплитудами.

Фиг. 30.3. Устройство из n одинаковых осцил­ляторов, расположенных на линии. Фаза колебания s-го осциллятора равна a s =sa.

Можно показать, что площадь под кривой интенсивности, включая все максимумы, равна 2pnI 0и в два раза превышает площадь пунктирного прямоугольника на фиг. 30.2.

Посмотрим теперь, что дает формула (30.3) в приложении к разным случаям. Пусть источники расположены на одной ли­нии, как показано на фиг. 30.3. Всего имеется n источников на расстоянии d друг от друга, и сдвиг фазы между соседними источ­никами выбран равным а. Тогда для лучей, распространяющихся в заданном направлении Э, отсчитываемом от нормали, вследст­вие разности хода лучей от двух соседних источников возникает

дополнительный сдвиг фазы 2pd1lsinq Таким образом 304 Рассмотрим - фото 80

дополнительный сдвиг фазы 2pd(1/l)sinq. Таким образом,

(30.4)

Рассмотрим сначала случай a=0. Все осцилляторы колеб­лются с одной фазой; требуется найти интенсивность их излуче­ния как функцию угла В. Подставим с этой целью j=kdsin q в формулу (30.3) и посмотрим, что получится в результате. Пре­жде всего, при j=0 возникает максимум. Значит, осцилляторы, колеблющиеся с одной фазой, дают мощное излучение в направ­лении 0 =0. Интересно узнать, где находится первый минимум.

3 Излучение Волны Кванты - изображение 81

Он возникает при j=2p/n; другими словами, первый мини­мум кривой интенсивности определяется из соотношения (2pd/l)sinq =2 p /n. Сокращая на 2p, получаем

(30.5)

Теперь разберем с физической точки зрения, почему мини­мум возникает именно в этом месте. В этом выражении nd есть полная длина L нашей системы осцилляторов. Обращаясь к фиг. 30.3, мы видим, что ndsinq =L sinq=D. Формула (30.5) подсказывает нам, что минимум возникает при D, равном одной длине волны. Но почему минимум получается при D = l? Дело в том, что поля от отдельных осцилляторов равномерно распределены по фазе от 0 до 360°. Стрелки (см. фиг. 30.1) опи­сывают полную окружность; мы складываем равные векторы, имеющие произвольные направления, а в этом случае сумма равна нулю. Вот при таких значениях угла, когда D=l, воз­никает минимум. Это и есть первый минимум.

Формула (30.3) имеет еще одну важную особенность: при уве­личении угла j на число, кратное 2p, значение интенсивности не меняется. Поэтому для j =2p, 4p, 6p и т. д. также возникают резкие и высокие максимумы. Вблизи этих максимумов интен­сивность повторяет свой ход (см. фиг. 30.2). Зададимся вопро­сом, в силу каких геометрических соотношений возникают дру­гие максимумы? Условие появления максимума записывается в виде j==2pm, где m любое целое число. Отсюда получаем (2pd/l)sinq=2pm. Сокращая на 2p, получаем

dsinq = m l . (30.6)

Это соотношение очень похоже на формулу (30.5). Однако там было nd sin q=l.Разница в том, что здесь нужно взять каж­дый отдельный источник и выяснить, что для него означает условие n dsin q =m l ; угол q здесь таков, что разность хода d l . Другими словами, волны, идущие от источников, раз­личаются по фазе на величину, кратную 360°, и, следовательно, все находятся в фазе. Поэтому при сложении волн возникает столь же высокий максимум, как и в рассмотренном ранее слу­чае т =0. Побочные максимумы и весь ход интенсивности здесь такие же, как в случае j =0. Таким образом, наша система посы­лает пучки лучей в разных направлениях, причем каждый пу­чок имеет высокий центральный максимум и ряд слабых боко­вых. Главные (центральные) максимумы в зависимости от вели­чины т называются максимумами нулевого, первого и т. д. порядков; т называют порядком максимума.

Обратите внимание на такой факт: если d меньше l, то фор­мула (30.6) имеет единственное решение при т =0. Поэтому для малого расстояния между источниками возникает один-един­ственный пучок, сконцентрированный около q=0. (Разумеется, есть еще пучок в обратном направлении.) Чтобы получить мак­симумы других порядков, расстояние d должно быть больше одной длины волны.

§ 2. Дифракционная решетка

На практике равенство фаз осцилляторов или антенн дости­гается с помощью проводов и всяких специальных устройств. Возникает вопрос, можно ли и как создать подобную систему для света. Сейчас мы еще не умеем делать маленькие радиостан­ции оптической частоты в буквальном смысле слова, соединять их крохотными проволочками и устанавливать для всех них одинаковые фазы. Однако есть другой очень простой способ, позволяющий добиться этой цели.

Предположим, у нас имеется большое количество парал­лельных проводов, отстоящих друг от друга на расстоянии d, и источник радиоволн, расположенный очень далеко, практи­чески на бесконечности. Этот источник создает электрическое поле у каждой из проволочек с одной и той же фазой, (Можно взять и объемную систему проводов, но мы ограничимся плоской системой.) Тогда внешнее электрическое поле будет двигать электроны взад и вперед в каждой проволочке, в результате они становятся новыми излучателями. Такое явление называется рассеянием: свет от некоторого источника вызывает движение электронов в среде, а оно в свою очередь генерирует собствен­ные волны. Поэтому достаточно взять ряд проволок на равном расстоянии друг от друга, подействовать на них радиоволнами от удаленного источника, и получается нужная нам система без всяких специальных контуров и т. п. Если лучи падают по нор­мали к плоскости проводов, фазы колебаний будут одинаковыми и возникнет та картина, о которой говорилось выше. Так, при расстоянии между проволочками, превышающем длину вол­ны, максимальная интенсивность рассеяния получается в на­правлении нормали и в других направлениях, определяемых формулой (30.6.).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




3. Излучение. Волны. Кванты отзывы


Отзывы читателей о книге 3. Излучение. Волны. Кванты, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x