Ричард Фейнман - 3. Излучение. Волны. Кванты

Тут можно читать онлайн Ричард Фейнман - 3. Излучение. Волны. Кванты - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    3. Излучение. Волны. Кванты
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 3. Излучение. Волны. Кванты краткое содержание

3. Излучение. Волны. Кванты - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

3. Излучение. Волны. Кванты - читать онлайн бесплатно полную версию (весь текст целиком)

3. Излучение. Волны. Кванты - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вот почему во многих случаях мы не замечаем эффекта интер­ференции, а полная интенсивность оказывается равной сумме интенсивностей всех источников.

§ 5. Рассеяние света

Приведенные выше примеры помогут нам понять одно явле­ние, которое возникает в воздухе в результате неупорядочен­ного расположения атомов. В главе о показателе преломления мы говорили, что падающий свет вызывает излучение атомов. Электрическое поле падающего пучка раскачивает электроны вверх и вниз, и они, двигаясь с ускорением, начинают излу­чать. Это рассеянное излучение образует пучок света, движу­щийся в том же направлении, что и падающий луч, но отличаю­щийся от него по фазе, благодаря чему и возникает показатель преломления.

Но что можно сказать об интенсивности рассеянного света в других направлениях? Если атомы очень правильно череду­ются, образуя красивый геометрический узор, интенсивность во всех остальных направлениях равна нулю, потому что ре­зультат сложения множества векторов с меняющимися фазами сводится к нулю. Но если расположение атомов беспорядочное, интенсивность в любом направлении, как мы уже говорили, равна сумме интенсивностей от каждого атома в отдельности. Более того, атомы газа постоянно движутся, и разность фаз двух атомов, принимающая определенное значение в некото­рый момент времени, в следующий момент уже изменится, поэтому при усреднении по времени исчезает каждый пере­крестный член в отдельности. Следовательно, для определе­ния интенсивности света, рассеянного газом, можно взять рассеяние на одном атоме и умножить интенсивность на чи­сло атомов.

Как уже отмечалось, голубой цвет неба объясняется именно рассеянием света в воздухе. Солнечный свет проходит сквозь воздух, и, когда мы смотрим в сторону от Солнца, например, пер­пендикулярно падающему лучу, мы видим свет голубой окрас­ки; попробуем теперь подсчитать интенсивность рассеянного света и понять, почему он голубой.

Падающий луч света с напряженностью электрического поля Е = Е 0е i v tв точке расположения атома, как известно, застав­ляет электрон колебаться вверх и вниз (фиг. 32.2). С помощью уравнения (23.8) находим амплитуду колебаний

3215 В принципе можно учесть затухание и ввести сумму по частотам - фото 157

(32.15)

В принципе можно учесть затухание и ввести сумму по частотам считая что атом - фото 158

В принципе можно учесть затухание и ввести сумму по часто­там, считая, что атом действует как совокупность осцилляторов с разными частотами. Однако для простоты ограничимся слу­чаем одного осциллятора и пренебрежем затуханием. Тогда выражение для амплитуды принимает вид, которым мы уже пользовались при вычислении показателя преломления:

(32.16)

Из этой формулы для и равенства 322 легко получить интенсивность рассеяния в заданном - фото 159и равенства (32.2) легко получить интен­сивность рассеяния в заданном направлении.

Однако чтобы сэкономить время вычислим сначала полную интенсивность рассеяния - фото 160

Однако, чтобы сэкономить время, вычислим сначала полную интенсивность рассеяния во всех направлениях. Полную энер­гию, рассеиваемую атомом за 1 сек во всех направлениях, можно получить из формулы (32.7). После перегруппировки членов выражение для энергии принимает вид

(32.17)

Фиг 322 Луч падающий на атом заставляет заряды электроны атома - фото 161

Фиг. 32.2. Луч, падающий на атом, заставляет заряды (элект­роны) атома колебаться. Движущиеся электроны в свою очередь излучают во все стороны.

Мы приводим результат в такой форме потому, что она удобна для запоминания: прежде всего, рассеиваемая энергия пропорциональна квадрату падающего поля. Что это означает? Очевидно, квадрат поля пропорционален энергии падающего пучка, проходящей за 1 сек. (В самом деле, энергия, падающая на 1 м 2за 1 сек, равна произведению e 0с и среднего квадрата электрического поля 2>; если максимальное значение Е есть Е 0то 2> = 1/ 2E 0 2.) Другими словами, рассеиваемая энергия пропорциональна плотности падающей энергии; чем сильнее солнечный свет, тем ярче кажется небо.

А какая доля падающего света рассеивается электроном Вообразим мишень с - фото 162

А какая доля падающего света рассеивается электроном? Вообразим мишень с площадью а, помещенную на пути луча (не настоящую мишень, сделанную из какого-то вещества, пото­му что она приведет к дифракции света и т. п., а воображаемую мишень, нарисованную в пространстве). Количество энергии, проходящее через поверхность 0, пропорционально падающей интенсивности и площади мишени:

(32.18)

А теперь давайте условимся: полное количество энергии, рассеиваемое атомом, мы приравняем энергии падающего пучка, проходящей через некоторую площадь; указав величину площа­ди, мы тем самым определяем рассеиваемую энергию. В такой форме ответ не зависит от интенсивности падающего пучка; он выражает отношение рассеиваемой энергии к энергии, падающей на 1 м 2. Другими словами,

Смысл этой площади заключается в том что если бы вся попадающая на нее - фото 163

Смысл этой площади заключается в том, что, если бы вся попа­дающая на нее энергия отбрасывалась в сторону, она рассеи­вала бы столько энергии, сколько рассеивает атом.

Эта площадь называется эффективным сечением рассеяния Понятие эффективного - фото 164

Эта площадь называется эффективным сечением рассеяния. Понятие эффективного сечения используется всегда, когда эффект пропорционален интенсивности падающего пучка. В таких случаях количественный выход эффекта задается пло­щадью эффективной области, выхватывающей из пучка такую часть, чтобы она равнялась выходу. Это ни в коем случае не означает, что наш осциллятор на самом деле занимает подобную площадь. Если бы свободный электрон просто качался взад и вперед, ему бы не соответствовала никакая площадь. Это лишь способ выражения результата через определенную величину; мы указываем площадь, на которую должен упасть пучок, чтобы получилась известная энергия рассеяния. Итак, в нашем случае

(32.19)

(s — рассеяние).

Рассмотрим несколько примеров. Прежде всего, когда соб­ственная частота очень мала или электрон вообще свободен, что соответствует w 0= 0, частота w выпадает и сечение s становится константой. В этом пределе сечение носит название томпсоновского сечения рассеяния. Оно равно площади квадра­тика со стороной около 10 -15м, т. е. площади 10 -30м 2, а это очень мало!

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




3. Излучение. Волны. Кванты отзывы


Отзывы читателей о книге 3. Излучение. Волны. Кванты, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x