Александр Филиппов - Многоликий солитон
- Название:Многоликий солитон
- Автор:
- Жанр:
- Издательство:Наука, гл. ред. физ.-мат. лит.
- Год:1990
- Город:Москва
- ISBN:5-02-014405-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Филиппов - Многоликий солитон краткое содержание
Одно из наиболее удивительных и красивых волновых явлений — образование уединенных волн, или солитонов, распространяющихся в виде импульсов неизменной формы и во многом подобных частицам. К солитонным явлениям относятся, например, волны цунами, нервные импульсы и др.
В новом издании (1-е изд. — 1985 г.) материал книги существенно переработан с учетом новейших достижений.
Для школьников старших классов, студентов, преподавателей.
Многоликий солитон - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Пороговая нелинейность ясно видна и в механизме возбуждения нервного импульса. Малые раздражения, вообще говоря, не приводят к возбуждению импульса; он пойдет лишь при достаточно сильном раздражении. Если бы не было этой нелинейности, наша жизнь стала бы совершенно невозможной. В теории солитонов более важны нелинейности других типов. С ними мы познакомимся в следующих главах.
ЧАСТЬ 2
НЕЛИНЕЙНЫЕ КОЛЕБАНИЯ И ВОЛНЫ
Нужно обращать острие ума на самые незначительные
и простые вещи и долго останавливаться на них, пока
не привыкнем отчетливо и ясно прозревать в них
истину.
Р. ДекартВ истории солитона много непонятного, но почему в прошлом веке не был открыт солитон, о котором пойдет речь в следующей части, объяснить просто невозможно. Цепочки из связанных маятников изучали многие ученые: проводили с ними опыты, рассчитывали волны, бегущие по ним. Однако никто не сумел увидеть возникающую в таких цепочках уединенную волну, которая сегодня считается одним из образцовых солитонов. В оправдание физиков и математиков прошлого века можно сказать, что и после того, как этот солитон был обнаружен в теоретической работе советских физиков Я. И. Френкеля и Т. А. Конторовой (1938 г.), современным ученым понадобилось почти тридцать лет для выяснения его истинной солитонной природы. К сожалению, снова и снова приходится убеждаться, что для настоящего освоения открытия нужно не менее двадцати-тридцати лет!
С солитоном Френкеля и Конторовой (ФК-солитон) стоит познакомиться поближе. Он устроен не сложнее, чем солитон Рассела или Кортевега и де Фриза (КдФ-солитон), встречается в самых разных физических системах и его легко наблюдать. ФК-солитон имеет неизменную форму, не зависящую от его скорости. Он может покоиться или двигаться, причем зависимость его энергии Е от скорости v такая же, как зависимость энергии от скорости для частицы с массой m 0 , которая следует из специальной теории относительности .
Отличие заключается в том, что вместо скорости света с в вакууме в этой формуле возникает v 0 — скорость распространения обычных синусоидальных волн малой амплитуды в среде, по которой бежит солитон. Более того, для ФК-солитонов существуют античастицы (антисолитоны) . Солитоны отталкиваются друг от друга, а солитон и антисолитон притягиваются и могут образовать связанное состояние — солитонный «атом». И все это можно увидеть на очень простой механической модели, которую совсем нетрудно сделать! Фарадею, Максвеллу, Кельвину и другим физикам прошлого века, предпочитавшим изучать сложные явления на простых моделях, этот солитон наверняка понравился бы.
Мы подойдем к нему издалека, сначала придется немного разобраться с нелинейными колебаниями и волнами . Тому, кто хочет по-настоящему понять устройство солитонов, необходимо познакомиться с нелинейными колебаниями одного маятника и понять, как распространяются волны в системе маятников, связанных друг с другом.
Глава 4
ПОРТРЕТ МАЯТНИКА
А круговое движение первее прямолинейного: оно про-
ще и более совершенно.
АристотельУравнение маятника
Рассмотрим движения хорошо известного математического маятника , т. е. небольшого грузика с массой m , подвешенного на абсолютно жесткой, нерастяжимой проволочке длины l ; массу проволочки будем считать пренебрежимо малой. Обычно изучают малые колебания и поэтому говорят о грузике на нитке, но мы хотим изучать любые движения и потому подвесим наш жесткий маятник на хорошо смазанной оси в точке О' так, чтобы он мог свободно вращаться, а не только качаться вблизи положения равновесия. Угол φ, измеряемый в радианах, отсчитывается от нижнего положения против часовой стрелки (рис. 4.1). Полный оборот соответствует φ = 2π, два оборота — 4π и т. д. Движению по часовой стрелке соответствует уменьшение угла φ. для полного оборота по часовой стрелке φ = -2π и т. д. Для определенности будем считать, что в момент времени t = 0 маятник отклонен на нулевой угол, φ(0) = 0. В качестве координаты грузика можно взять угол φ или же алгебраическое значение длины дуги s = φ • l .

В каждой точке А движение происходит в направлении касательной к окружности под действием тангенциальной (направленной по касательной) составляющей силы тяжести. Как ясно из рисунка, эта составляющая равна (с учетом нашего выбора положительного направления движения). Скорость движения грузика по окружности равна v = s' = l φ', где s' и φ' обозначают производные по времени t . Пользуясь тем, что малые смещения грузика направлены по касательной к окружности, точно так же определим тангенциальное (т. е. по направлению дуги окружности) ускорение а = v' == s" = l φ", где s " и φ" — вторые производные по времени. Второй закон Ньютона для движения грузика можно написать в виде ma =
, или окончательно

Соотношение (4.1), выражающее угловое ускорение грузика φ" через его положение φ( t ) в тот же самый момент времени, называют дифференциальным уравнением движения грузика. Решить его значит найти такую зависимость угла φ от времени t , для которой в каждый момент выполнено соотношение (4.1).
Дифференциальное уравнение описывает все возможные движения маятника. Чтобы найти какое-то конкретное движение, надо еще добавить некоторые дополнительные условия. Например, если задать положение и скорость грузика в начальный момент времени, то движение будет полностью определено. Как сказал бы математик, существует единственное решение дифференциального уравнения (4.1), удовлетворяющее начальным условиям φ(0) = φ 0, φ'(0) = φ' 0, (φ 0и φ' 0могут быть любыми).
Это уравнение, очевидно, нелинейно . Даже если известны какие-то два его решения φ 1(t) и φ 2(t), новое решение их сложением не получишь. Ясно также, что умножение решения на число с 1 не дает нового решения: вторая производная от с φ 1равна с φ" 1, а
. Правда, есть простой случай, когда φ 1 + φ 2тоже есть решение, но, к сожалению, этот случай не интересен, так как дает просто разное описание состояния покоящегося маятника. Действительно, уравнение имеет простые решения φ =
... Первая серия соответствует устойчивому положению равновесия маятника внизу (минимум потенциальной энергии). Грузик покоится, его скорость, ускорение и действующая на него сила равны нулю. А вторая серия — это неустойчивое положение равновесия в крайней верхней точке (максимум потенциальной энергии). Если грузик чуть-чуть отклонится от этого положения, то он придет в движение. Так как в реальном физическом мире всегда остаются какие-то малые неконтролируемые воздействия на грузик (« возмущения »), долго находиться в этом состоянии он не может.
Интервал:
Закладка: