Александра Малова - Основы эконометрики в среде GRETL. Учебное пособие
- Название:Основы эконометрики в среде GRETL. Учебное пособие
- Автор:
- Жанр:
- Издательство:ООО «Проспект»
- Год:2016
- ISBN:9785392202348
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александра Малова - Основы эконометрики в среде GRETL. Учебное пособие краткое содержание
Основы эконометрики в среде GRETL. Учебное пособие - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
А. С. Малова
Основы эконометрики в среде GRETL
Учебное пособие
Введение
Цель данного пособия – познакомить читателя с основами проведения эконометрических исследований в среде GRETL. Основная аудитория данной книги – студенты бакалавриата, обучающиеся по направлениям «Экономика», «Бизнес-информатика», «Управление персоналом», «Менеджмент», однако она может быть полезна и студентам других направлений, а также представителям бизнес-сообщества, которые по роду своей деятельности столкнулись с необходимостью проведения эконометрических исследований. Данное учебное пособие – это попытка практического изложения основ эконометрики с минимальными теоретическими выкладками, при этом предполагается, что недостаток теоретических знаний должен быть восполнен читателем самостоятельно с помощью учебников по основам эконометрики. Для обеспечения связи практических навыков с теоретическими знаниями в области эконометрики ко всем рассматриваемым темам даются ссылки на литературу. При этом основная задача данного пособия – помочь читателю в освоении эконометрики, изложить некоторые технические аспекты проведения исследований с использованием среды GRETL. Почему именно GRETL? Данный эконометрический пакет является бесплатным программным продуктом, который, с одной стороны, доступен любому пользователю, а с другой – обладает достаточно обширными возможностями для анализа данных и проведения эмпирических исследований. Немаловажным является и то, что в GRETLимеется значительный пул данных из большинства классических зарубежных учебников по основам эконометрики, что позволит достаточно легко переключиться с простейших примеров, рассмотренных в данном пособии, на более сложные содержательные задачи и кейсы из учебников.
В данном пособии весь материал излагается с точки зрения практики – то есть все основные разделы курса эконометрики для бакалавриантов даны в примерах и задачах. Поскольку невозможно приобрести навык проведения эконометрических расчетов, только изучая учебник, предполагается, что читатель должен иметь возможность проделать все излагаемые действия на практике. С этой целью в пособии использовались данные из учебника J. M. Wooldridge «Basic econometrics», которые доступны в GRETL. Все наборы данных при первом обращении к ним в пособии обозначены ссылками и указателями на источник.
Перед тем как начать осваивать основы эконометрики в среде GRETL, необходимо скачать и установить на свой компьютер сам статистический пакет. Он доступен по ссылке http://GRETL.sourceforge.net/. Вся информация о том, как установить GRETL, приводится на сайте, поэтому нет нужды в подробном изложении, стоит лишь сказать, что программа имеет версию как под ОС Windows, так и под Mac OS, а также что библиотеки данных должны быть установлены отдельно, для этого нужно перейти по ссылке http://GRETL.sourceforge.net/GRETL_data.html.
Удачи в проведении интересных, содержательных и полезных эконометрических исследований!
1. Линейная регрессионная модель
Для начала введем некоторые обозначения. Предположим, что некоторая величина Y зависит от величин . Введем понятие регрессионного уравнения – это уравнение вида , где . Через n обозначим число наблюдений, по которым строится регрессия, k – число регрессоров в модели, – случайная величина, которая носит название ошибки регрессии.
Модель такого вида называется классической линейной регрессионной моделью (ЛРМ) в случае, если выполняются следующие предпосылки:
1. , – линейная спецификация модели, где – коэффициенты модели, которые подлежат определению, , – ошибки модели.
2. , – детерминированные величины.
3. – математическое ожидание ошибок равно нулю, , дисперсия ошибок не зависит от номера наблюдения.
4. , – совместное математическое ожидание ошибок разных наблюдений равно нулю.
5. Если выполняется дополнительная предпосылка о нормальном распределении ошибок , то классическая линейная регрессионная модель называется нормальной линейной регрессионной моделью (НЛРМ).
Подробнее о предпосылках линейной регрессионной модели можно прочесть в [2, 3].
2. Оценка линейной регрессионной модели
Рассмотрим множественную линейную регрессию
, ,
где – средний уровень заработной платы в час в долларах, – образование в годах, – общий стаж работы в годах, – опыт работы у текущего работодателя, в годах, – ошибка регрессии, n – число наблюдений [ файл с данными wage1.gdt ].
Для того чтобы оценить предложенную модель по методу наименьших квадратов (МНК), используем команду меню Модель – Метод наименьших квадратов .
Читать дальшеИнтервал:
Закладка: