Александр Волошинов - Математика и искусство

Тут можно читать онлайн Александр Волошинов - Математика и искусство - бесплатно полную версию книги (целиком) без сокращений. Жанр: Детская образовательная литература, издательство Просвещение, год 1992. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Волошинов - Математика и искусство краткое содержание

Математика и искусство - описание и краткое содержание, автор Александр Волошинов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В книге на обширном материале от античных времен до наших дней прослеживаются пути взаимодействия и взаимообогащения двух великих сфер человеческой культуры — науки и искусства, развивается стержневая идея книги — идея единства науки и искусства, единства истины и красоты. Рассматривая 'математические начала' формообразования в музыке, архитектуре и живописи, автор показывает, что глубинные, фундаментальные закономерности, присущие этим видам искусства, находят адекватное выражение на языке математики. Книга написана ярко, увлекательно и доступно, богато иллюстрирована в цвете и рассчитана на самые широкие круги читателей.

Математика и искусство - читать онлайн бесплатно полную версию (весь текст целиком)

Математика и искусство - читать книгу онлайн бесплатно, автор Александр Волошинов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Монохорд — однострунный — был одним из первых музыкальных инструментов древних греков. Это был длинный ящик, необходимый для усиления звука, над которым натягивалась струна. Снизу струна поджималась передвижной подставкой для деления струны на две отдельно звучащие части. На деревянном ящике под струной имелась шкала делений, позволявшая точно установить, какая часть струны звучит. Конечно, как музыкальный инструмент монохорд покажется нам слишком примитивным, однако он был прекрасным физическим прибором и учебным пособием, на котором античные созерцатели постигали премудрости музыкальной грамоты.

Древние уверяли, что уже Пифагор Знал законы колебания струны монохорда и построения музыкальных созвучий (консонансов), однако запись об этих законах мы находим у пифагорейца Архита из Тарента (428-365 гг. до н. э.), жившего На полтора столетия позже Пифагора. Архит был, безусловно, самым выдающимся представителем пифагорейской школы, другом философа Платона и учителем математика Евдокса (ок. 408 — ок. 355 гг. до н. э.), государственным деятелем и полководцем. Многосторонность Архита поразительна: он решил знаменитую де-лосскую задачу об удвоении куба, заслуженно считался крупнейшим пифагорейским теоретиком музыки, первым упорядочил механику на основе математики и свел движения механизмов к геометрическим чертежам, работал над деревянной моделью летающего голубя. По мнению Ван дер Вардена, Архит является автором VIII книги "Начал" Евклида, в которой изложена арифметическая теория пропорций. Как государственный деятель Архит пользовался исключительным уважением: он семь лет подряд избирался стратегом *, хотя по закону стратеги выбирались лишь на один год. Путем искусных дипломатических маневров Архит вызволил из плена Платона и тем самым спас жизнь великому философу. "Славный Архит, земель, и морей, и песков исчислитель..." — писал Гораций.

* ( Стратег — в древнегреческих городах-государствах военачальник, облеченный ши-кими военными и политическими полномочиями. )

"Законы Пифагора — Архита", на которых основывалась вся пифагорейская теория музыки, можно сформулировать так:

1- Высота тона (частота колебаний f) звучащей струны обратно пропорциональна ее длине l:

Математика и искусство - изображение 98(6.2)

здесь а — коэффициент пропорциональности, зависящий от физических свойств струны (толщины, материала и т. п.).

2. Две звучащие струны дают консонанс лишь тогда, когда их длины относятся как целые числа, составляющие треугольное число 10 = 1 + 2 + 3 + 4, т. е. как 1:2, 2:3, 3:4.

Эти интервалы — "совершенные консонансы", и их интервальные коэффициенты позже получили латинские названия *:

*( Названиями интервалов в музыке служат латинские числительные, которые указывают порядковый номер ступени звукоряда, составляющей интервал с исходной ступенью: октава — восьмая, квинта — пятая, кварта — четвертая и т. д. )

октава

Математика и искусство - изображение 99

квинт

Математика и искусство - изображение 100

кварта

Математика и искусство - изображение 101

Треугольное число 10 Было замечено также что наиболее полное слияние тонов - фото 102

Треугольное число 10

Было замечено также, что наиболее полное слияние тонов дает октава (2/1), затем идут квинта (3/2) и кварта (4/3), т. е. чем меньше число п в отношении вида тем созвучнее интервал Второй закон Пифагора Архита и сейчас кажется - фото 103тем созвучнее интервал.

"Второй закон Пифагора — Архита" и сейчас кажется удивительным. (В его истинной природе мы разберемся в главе 10.) Что же говорить о пифагорейцах, которых он просто привел в восторг! Здесь они нашли подтверждение всей своей философии: целые числа, более того, числа тетрактиса правят всем, даже музыкой! Пифагорейцы не заставили себя долго ждать и распространили закон музыкальных отношений всюду, где это возможно, в том числе и на строение вселенной (см. гл. 7).

Итак, если в качестве цены деления шкалы монохорда взять отрезок l, равный 1/12 длины струны монохорда l 1, то вместе со всей струной монохорда длины l 1= 12l будут созвучны ее части длины l 2= 6l — звук на октаву выше (l 2/l 1= l/2), l 3= 9l — звук на квинту выше (l 3/l 1= 2/3) и l 4= 8l — звук на кварту выше (l 4/l 1= 3/4). Это созвучие и определяющие его числа 6, 8, 9, 12 назывались тетрада (четверка). Пифагорейцы считали, что тетрада — это "та гамма, по которой поют сирены". При настройке античной лиры, ставшей символом музыки, четыре ее струны обязательно настраивались по правилу тетрады, а настройка остальных струн зависела от лада, в котором предстояло на ней играть.

Но для античного мыслителя было мало установить численные значения изучаемых величин. Пифагорейский глаз и ум привыкли не только измерять, но и соизмерять , т. е. раскрывать внутренние связи между изучаемыми предметами, другими словами, устанавливать пропорциональные отношения. Архит был истинным пифагорейцем, и он установил пропорциональные отношения между основным совершенным консонансом — октавой, квинтой и квартой. Решение это было получено Архитом в связи с желанием разделить октаву на благозвучные интервалы. Вероятно, Архит исходил из того интуитивно очевидного предположения, что вместе с тонами f 1и f 2= 2f 1, дающими основной консонанс — октаву, должно дать консонанс и их среднее арифметическое f 3= (f 1+ f 2)/2. Но тогда длина струны l 3выразится через длины струн l 1и l 2согласно (6.2) следующим образом:

т е l 3есть среднее гармоническое l 1и l 2см 51 Легко обнаружить и - фото 104

т. е. l 3есть среднее гармоническое l 1и l 2(см. 5.1). Легко обнаружить и обратное: среднее гармоническое для частот f 1и f 2переходит в среднее арифметическое для длин l 1и l 2:

Вспоминая что мы вместе с Архитом приходим к важному выводу 63 - фото 105

Вспоминая, что мы вместе с Архитом приходим к важному выводу 63 64 т е квинта есть - фото 106мы вместе с Архитом приходим к важному выводу:

63 64 т е квинта есть среднее гармоническое длин струн основного тона - фото 107(6.3)

64 т е квинта есть среднее гармоническое длин струн основного тона l 1 и - фото 108(6.4)

т. е. квинта есть среднее гармоническое длин струн основного тона l 1 и октавы l 2 , а кварта — среднее арифметическое l 1 и l 2 .

Но произведение среднего арифметического на среднее гармоническое равно произведению исходных чисел:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Волошинов читать все книги автора по порядку

Александр Волошинов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика и искусство отзывы


Отзывы читателей о книге Математика и искусство, автор: Александр Волошинов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x