Джо Боулер - Математическое мышление
- Название:Математическое мышление
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2019
- Город:Москва
- ISBN:9785001008910
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джо Боулер - Математическое мышление краткое содержание
Математическое мышление - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Во многих школах США учеников зачисляют в группы по изучению математики, сформированные по принципу успеваемости, начиная с седьмого класса. Создаются отдельные классы, в которых подросткам преподают материал соответствующего уровня. Международные аналитики, изучающие уровень знаний по математике в разных странах, пришли к важному выводу: самых больших успехов добились те страны, в которых меньше всего делят учеников на группы по способностям. Например, в ходе третьего международного исследования по математике и естественно-научным дисциплинам было обнаружено, что в США имеет место самый высокий разброс успеваемости учеников — иными словами, самый высокий уровень разделения на группы по способностям. Страной с самым высоким уровнем успеваемости стала Южная Корея; там реже использовалось деление на группы и успеваемость распределялась наиболее равномерно. В США была также обнаружена самая сильная корреляция между уровнем успеваемости и социально-экономическим статусом. Этот результат был отнесен на счет деления учеников на группы (Beaton & O’Dwyer, 2002). Самый высокий в мире уровень знаний по математике отмечен в таких разных странах, как Финляндия и Китай, причем в обеих отказываются от деления на группы по способностям и преподают сложные дисциплины всем. В объединенном школьном округе Сан-Франциско, одном из крупнейших школьных округов Калифорнии, было решено отказаться от всех форм деления на группы и отменить углубленные курсы до десятого класса. Вплоть до перехода в десятый класс учеников стимулируют изучать математику на как можно более высоком уровне. До этого момента все могут осваивать анализ, а в дальнейшем у всех детей есть доступ ко всем углубленным курсам. Это исключительный случай, и он заслуживает восхищения. Внимательно изучив результаты научных исследований, школьный совет единогласно утвердил предложение об отмене устаревших форм деления на группы. В большинстве школьных округов учеников распределяют по группам в гораздо более раннем возрасте. В округе, расположенном в весьма успешном районе неподалеку от Стэнфорда, половину детей зачисляют в группы низкого уровня, когда они переходят в седьмой класс, лишая их возможности в дальнейшем изучать анализ. Именно в этот момент родители должны услышать тягостный звук: хлопок двери в будущее для их детей. Если мы хотим начать новую эпоху, в которой все стремятся изучать математику высокого уровня, необходимо перейти к более гибким методам деления на группы, основанным на результатах научных исследований (о них пойдет речь ниже).
Учителям трудно давать всем ученикам задания, соответствующие уровню каждого, но они знают золотую середину, позволяющую добиться поразительной вовлеченности всего класса: когда задания достаточно сложны для детей, но не выходят за рамки их возможностей. На первый взгляд кажется, что сделать это легче, если разделить учеников на группы по уровню успеваемости. Но в этом случае ученики показывают более низкие результаты, поскольку даже в таких группах у детей разные интересы и разная подготовка. Однако учителя продолжают считать всех учеников одинаковыми и выбирают узкие задания, состоящие из коротких вопросов — слишком легкие для одних и слишком трудные для других. Именно поэтому постановка задач категории «низкий пол, высокий потолок» на уроках математики так важна для будущего. Другая, более очевидная причина того, что деление учеников на группы снижает успеваемость, — сигнал о фиксированном мышлении, который оно подает всем ученикам.
Исследования показывают, что происходит, когда школы решают отказаться от деления на группы по уровню успеваемости. Одна важная работа продемонстрировала последствия отказа от такого деления в школьном округе Нью-Йорка. В прошлом ученики средних школ Нью-Йорка занимались в обычных классах и классах с углубленным изучением математики. Затем в округе приняли решение отменить специализированные классы и преподавать всем математику высшего уровня сложности. Исследователям удалось отслеживать успеваемость учеников на протяжении трех лет занятий в классах, сформированных по принципу успеваемости, а затем трех лет обучения в смешанных классах. Они изучали учеников шести возрастных групп вплоть до окончания старшей школы. Было установлено, что те, кто изучал математику более высокого уровня в общих классах, получали больше удовольствия от нее и сдали тест штата Нью-Йорк на год раньше , чем ученики, которые были поделены на группы по принципу успеваемости. Вдобавок оказалось, что отказ от такого деления полезен ученикам с разными уровнями успеваемости (Burris, Heubert, & Levin, 2006). Эти выводы подтверждают многие другие исследования (см., например, Boaler, 2013b). Результаты многих работ указывают на негативное влияние деления на группы по уровню успеваемости, но эта практика до сих пор существует в большинстве школ США. Ниже я расскажу, как во время занятий можно использовать современные и эффективные методы деления учеников на группы, обеспечивающие всем возможность учиться и развивать мышление роста.
Джилл Баршей — журналист Hechinger Post. Ее популярная колонка «Образование в цифрах» публикуется раз в неделю в U.S. News & World Report. После того как Джилл прочла мою книгу «При чем тут математика?» и прошла онлайн-курс для учителей, у нее появилось желание преподавать математику. Она стала учителем алгебры в девятом классе чартерной школы в Бруклине. Но она не знала, с какими учениками ей предстоит столкнуться: деморализованными, которые, по сути, поставили крест и на математике, и на себе, поскольку их не зачислили на курс алгебры в восьмом классе. Дети заявили Джилл, что они не «умники», и весь год вели себя очень плохо. К сожалению, это одно из следствий деления учеников на группы по успеваемости. В большинстве своем плохо ведут себя ученики, которые не верят, что могут добиться успеха. Учителя беспокоятся, что в общих группах ученики с плохим поведением будут оказывать негативное влияние на остальных. Однако дети ведут себя плохо только тогда, когда им внушают мысль, что они не смогут ничего добиться. Как можно их за это винить? За все годы преподавания в разношерстных группах учеников я пришла к выводу, что, когда дети начинают верить в себя и понимают, что я верю в них, плохое поведение и отсутствие мотивации сходят на нет.
Я много лет работала в замечательной средней школе, которая демонстрирует твердую приверженность преподаванию, ориентированному на мышление роста, и в которой всегда разделяли учеников на группы по смешанному принципу. Несколько лет назад в ней начали ощущать давление со стороны родителей, которые требовали математических классов, чтобы их дети могли перейти в старшую школу, заранее изучив геометрию. В итоге школа сдалась, и в ней появились обычные классы и классы с углубленным изучением математики. Это изменение оказалось катастрофичным: множество учеников разных уровней потеряли интерес к математике. У учеников с одинаковым уровнем успеваемости, зачисленных в разные группы, возникли серьезные проблемы, у многих сформировалась установка на данность в отношении своих способностей. Кроме того, многие ученики, которые попали в классы с углубленным изучением математики, стали испытывать неприязнь к этому предмету и предпочли уйти оттуда, что нанесло им еще больший вред. Через два года школа отказалась от деления учеников по успеваемости и вернулась к смешанным группам. Сейчас она предлагает всем желающим курс геометрии в качестве факультатива, проводимого до начала уроков. Эта превосходная стратегия позволяет справиться с давлением родителей, предоставляя возможность выбора тем, кто хочет пройти углубленный курс математики, но не подавая ученикам губительных сигналов об их потенциале, формирующих фиксированное мышление.
Читать дальшеИнтервал:
Закладка: