Джо Боулер - Математическое мышление
- Название:Математическое мышление
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2019
- Город:Москва
- ISBN:9785001008910
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джо Боулер - Математическое мышление краткое содержание
Математическое мышление - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Учителя, которые хотят дать всем ученикам возможность освоить материал высшего уровня, но вынуждены проводить уроки в классах, сформированных по принципу успеваемости, порой дают сложные задания. Им хорошо известно, что деление по уровню успеваемости ограничивает достижения учеников. Кроме того, они знают, что при наличии правильных сигналов и грамотного преподавания ученики классов низшего уровня способны выполнять более сложные задания.
В еще одной замечательной городской школе, где придерживаются подхода, ориентированного на мышление роста, учителя отказались от формирования классов по принципу успеваемости и ввели дополнительные занятия для слабых учеников. Их могут посещать все дети, которым необходимо чуть больше времени для изучения материала. Дополнительные занятия проводятся после обычных уроков математики, включенных в расписание, и не посвящены работе над ошибками. Ученики могут вернуться к материалу занятий обычной школьной программы и обсудить его, более тщательно проанализировав математические концепции, которые рассматривались на уроке. Приходят и те, кому математика дается с трудом, и те, что справляются с ней, но стремятся глубже изучать этот предмет. Название курса не подразумевает, что он предназначен только для учеников с низкой успеваемостью.
Учителя, которые стремятся создать новое будущее (где всем свойственно мышление роста и у всех есть благоприятные возможности) и предпочитают работать в смешанных классах, достойны восхищения. Но обучение групп с широким диапазоном успеваемости требует компетентного подхода. В таких группах не получится объяснять узкие математические темы, которые смогут понять немногие. Ниже я расскажу о ряде важных стратегий эффективного преподавания в разнородных группах, которые опираются на результаты научных исследований.
При отказе от разделения на группы по уровню успеваемости на уроках математики очень важно обеспечить возможность изучать математику на разных уровнях, а также не ставить закрытые вопросы, подходящие для немногих. Есть разные способы стимулировать изучение математики на разных уровнях.
1. Постановка открытых задач
Как было сказано в главе 5, если ученикам, входящим в состав разнородной группы, ставить закрытые вопросы, многие из них не смогут дать ответ или проявить себя. Поэтому крайне важно ставить открытые задачи из категории «низкий пол, высокий потолок». Они позволяют всем усвоить соответствующие математические концепции и поднять их понимание на очень высокий уровень. К счастью, задачи категории «низкий пол, высокий потолок» относятся также к числу самых увлекательных, имеющих большую ценность и помимо того, что они рассчитаны на детей с разными уровнями успеваемости. Они знакомят учеников с важными математическими концепциями, которые пробуждают у них интерес и стимулируют творческий подход. В главе 5приведен ряд примеров таких задач, а также ссылки на сайты, на которых можно найти их описание.
Учителя успешной английской школы Феникс-Парк, использующей проектно-ориентированный подход, подобрали ряд задач категории «низкий пол, высокий потолок», которые могли решать все дети. Некоторые решали их успешно в одни дни, а другие — в другие дни. Было невозможно предвидеть, какие ученики будут решать задачи на каком уровне в конкретный день. В главе 5 приведен пример задачи о максимальной площади, которую можно огородить забором; благодаря ей одни ученики узнали о тригонометрии, другие — о теореме Пифагора, а третьи — о фигурах и площади. Роль учителя во время уроков сводилась к обсуждению заданий, над которыми работали ученики, а также к тому, чтобы направлять детей и расширять их мышление. Во время обычного урока эту роль выполняет учебник, темы и задачи по математике, которые в нем представлены. Но это грубый инструмент, который не способен определить, что знает ученик или что ему нужно знать. Во время уроков, ориентированных на мышление роста , именно учитель принимает решения, которые касаются отдельных детей или групп и направлены на то, чтобы дать ученикам возможность проявить себя, поддержать их и помочь им выйти за привычные рамки на своем уровне. При работе над открытыми задачами учителя могут взаимодействовать с учениками, знакомить их с математическими концепциями и обсуждать важные вопросы. Потому-то в такой среде ученики добиваются больших успехов. Этот подход требует от учителей серьезного напряжения, но приносит им огромное удовлетворение, особенно когда они видят, как дети, которым раньше не хватало уверенности в себе и у которых была низкая успеваемость, взлетают и стремительно набирают высоту.
Несколько лет назад в Англии я работала с группой учителей, которые решили отказаться от деления на группы по уровню успеваемости в старших классах, когда узнали о методе комплексного обучения, описание которого приведено ниже. У них не было ни специальной подготовки, ни такой замечательной программы, как в школе Феникс-Парк, но они узнали о комплексном обучении и подобрали ряд задач категории «низкий пол, высокий потолок». В конце первой недели преподавания в новых классах, сформированных с ориентацией на мышление роста, один учитель с удивлением обнаружил, что первым задачу решил ученик, который раньше был в группе самого низкого уровня. И позже этих учителей приятно удивляло то, что ученики с разными уровнями успеваемости используют творческие методы решения задач. Они были в восторге от того, насколько хорошо ученики отреагировали на отказ от деления на группы по успеваемости. Вдобавок и проблемы с дисциплиной, обострения которых они опасались, исчезли. Мне было интересно узнать об этом, поскольку эти учителя выражали обеспокоенность по поводу отказа от формирования групп по успеваемости и по поводу того, смогут ли дети работать вместе. Учителя обнаружили, что, когда они дают открытые задачи, все ученики проявляют к ним интерес, стараются проявить себя и получают необходимую поддержку. Со временем ученики, которых раньше считали слабыми, повысили свой уровень. При этом класс не делился на «способных» и «неспособных». Он состоял из увлеченных детей, которые учатся вместе и помогают друг другу.
2. Предоставление возможности выбирать задачи
Ученикам, которые занимаются в классах, ориентированных на мышление роста, не всегда нужно работать над одними и теми же задачами. Им можно предложить разные задания разных уровней и из разных областей. Важно, чтобы сами ученики могли выбирать задачу, над которой хотят работать, а не учителя. Однажды во время урока в школе Феникс-Парк, на котором я присутствовала, ученикам предложили выбрать одну из двух задач: найти фигуры, площадь которых составляет 64 единицы; найти фигуры, объем которых составляет 216 единиц. В четвертом классе я видела, как учитель предлагает ученикам использовать дробные полоски или палочки Кюизенера, для того чтобы найти как можно больше дробей, эквивалентных 1/ 4, а в качестве дополнительного, более трудного задания — найти дроби, эквивалентные 2/ 3. Расширенные задания и различные задачи с дополнительными вопросами — это и есть то, что можно (и, пожалуй, целесообразно) делать на каждом уроке. Все ученики должны иметь возможность выбора или решения более сложных и интересных задач.
Читать дальшеИнтервал:
Закладка: