Чарльз Эллис - Эпигенетика
- Название:Эпигенетика
- Автор:
- Жанр:
- Издательство:Техносфера
- Год:2010
- Город:Москва
- ISBN:978-5-94836-257-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Чарльз Эллис - Эпигенетика краткое содержание
Книга ярко и наглядно повествует о новой науке общебиологического значения — эпигенетике, а также об ее отдельных областях. В издании представлено описание разных эпигенетических сигналов и механизмов их реализации, а также собственно феномен, история и концепции эпигенетики, ее отдельные механизмы и пути реализации эпигенетических сигналов в клетке. Авторы различных глав данной книги — ведущие в мире специалисты в области эпигенетики, являющиеся, как правило, и основоположниками ее отдельных областей.
Издание будет полезно широкому кругу читателей, интересующихся коренными проблемами живого мира, сущности жизни и молекулярных механизмов ее проявления.
По формирующейся традиции современной российской научной литературы, оригинальное русскоязычное печатное издание неопрятно переведено, отвратительно вычитано и содержит большое количество ошибок, начиная с обложки. Чарльз Дэвид Эллис указан как С. Д. Эллис.
Эпигенетика - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Одноклеточные и «низшие» эукариотические организмы — Saccharomyces cerevisiae, Schizosaccharomyces pombe и Neurospora crassa — позволяют проводить детальный генетический анализ, отчасти облегчаемый их коротким жизненным циклом. Переключение типов спаривания (МАТ), случающееся у S. cerevisiae (глава 3) и S. pombe (глава 6), дало весьма демонстративные примеры, показывающие значение контроля генов, опосредованного хроматином. У почкующихся дрожжей S. cerevisiae было показано, как уникальные белки — регуляторы «молчашей» информации (SIR — silent information regulator) привлекают специфические модифицированные гистоны. Этому предшествовали элегантные эксперименты с использованием генетики для обоснования активного участия гистоновых белков в регуляции генов (Clark-Adams et al., 1988; Kayne et al., 1988). У дробянковых дрожжей S. pombe паттерны модификаций гистонов, действующие как активирующие и репрессирующие сигналы, замечательным образом сходны с таковыми у многоклеточных организмов. Это открыло путь для использования мощных генетических фильтров в поисках генных продуктов, которые супрессируют или усиливают сайленсинг генов. Совсем недавно для дробянковых дрожжей был предложен целый ряд механистических моделей, связывающих механизм PH К-интерференции (RNAi) с индукцией модификаций гистонов, репрессирующих экспрессию генов (Hall et al., 2002; Volpe et al., 2002). Вскоре после этого был сделан вывод об участии механизма RNAi и в транскрипционном сайленсинге генов у растения Arabidopsis thaliana. что подчеркнуло потенциальное значение регуляции этого типа у широкого круга организмов (см. раздел 10).
Другие нетрадиционные организмы также внесли несоразмерно большой вклад, вначале казавшийся необычным, в расшифровку эпигенетических путей. Гриб N. crassa продемонстрировал необычный неменделевский феномен индуцируемых повторами точечных мутаций (RIP — repeat-induced point mutations) как модель для изучения эпигенетического контроля (глава 6). Позже этот организм был использован для демонстрации первой функциональной связи между модификациями гистонов и метилированием ДНК (Tamaru and Selker 2001); это открытие впоследствии было распространено на «высшие» организмы (Jackson et al. 2002). Такие ресничные простейшие, как Tetrahymena и Paramecium , обычно используемые в биологических лабораториях в качестве удобных объектов для микроскопирования, весьма способствовали важным эпигенетическим открытиям благодаря своему уникальному ядерному диморфизму. Каждая клетка несет два ядра: транскрипционно активный соматический макронуклеус и ядро зародышевого пути — микронуклеус, который является транскрипционно неактивным. Используя макронуклеусы в качестве источника, богатого «активным» хроматином, исследователи смогли выполнить биохимическую очистку первого гистон-модифицирующего фермента— ацетилтрансферазы гистонов или HAT (Brownell et al., 1996). Инфузории хорошо известны также благодаря характерному для них особому явлению запрограммированной элиминации ДНК в ходе их полового жизненного цикла, включаемой малыми некодируюшими РНК и модификациями гистонов (глава 7).
У многоклеточных организмов размер генома и сложность организма в целом возрастают в ряду от беспозвоночных ( Caenorhabditis elegans, Drosophila melanogaster ) или растений ( A. thaliana ) до «высших» и, так сказать, «имеющих к нам более прямое отношение» позвоночных организмов (млекопитающих). Растения, однако, сыграли более важную роль для всей эпигенетики, оказавшись богатейшим источником эпигенетических открытий (глава 9) от перемещающихся элементов и парамутаций (McClintock, 1951) до первого описания некодирующих РНК, участвующих в транскрипционном сайленсинге (Ratcliff et al., 1997). Исследования, выполненные на растениях, обнаружили важные связи между метилированием ДН К, модификациями гистонов и компонентами механизма RNAi. Открытие эпиаллелей растений, получивших такие комические названия как SUPERMAN и KRYPTONITE (например, Jackson et al., 2002), и нескольких генов яровизации (Bastow et al., 2004; Sung and Amasino, 2004) создало далее целую область исследований по выяснению роли эпигенетики в развитии и клеточной памяти. Меристемные клетки растений обусловили также возможность изучать такие ключевые вопросы, как соматическая регенерация и пластичность стволовых клеток (главы 9 и 11).

Рис. 3.2.Модельные организмы, используемые в эпигенетических исследованиях
Схематическое изображение модельных организмов, используемых в эпигенетических исследованиях. S. cerevisiae: переключение типов спаривания для изучения эпигенетического контроля на уровне хроматина. S. pombe: мозаичный сайленсинг генов, проявляющийся как секторирование колонии. Neurospora crassa: эпигенетические системы защиты генома связаны с точечными мутациями, индуцированными повторами, подавлением [quelling] и мейотическим сайленсингом неспаренных нитей ДНК; все это выявляет взаимодействие между путями РНК-интерферениии, ДНК и метилированием гистонов. Tetrahymena: Хроматин в соматических ядрах и ядрах зародышевого пути различается эпигенетически регулируемыми механизмами. Arabidopsis: модель для репрессии с помощью механизмов сайленсинга ДНК. гистонов и сайленсинга, направляемого РНК. Кукуруза: модель для импринтинга. парамутации и сайленсинга, индуцируемого транспозонами. С. elegans: эпигенетическая регуляция в зародышевом пути. Drosophila: обусловленный эффектом положения мозаицизм проявляется в виде клональных пятен экспрессии и сайленсинга гена белой окраски глаз (white). Млекопитающие: инактивация Х-хромосомы.
Что касается понимания развития у животных. Drosophila с давних пор была и остается постоянным генератором генетической энергии Основываясь на пионерской работе Меллера (Muller, 1930), было получено множество мутаций, влияющих на развитие, в том числе мутации, вызывающие гомеотические трансформации и эффект положения мозаичного типа; эти мутации описываются ниже (глава 5). Мутации, вызывающие гомеотические трансформации, привели к мысли, что могли бы существовать регуляторные механизмы для установления и поддержания клеточной идентичности/памяти; позже было показано, что они регулируются системами Polycomb и tnthorax (главы 11 и 12). Что касается эффекта положения мозаичного типа (PEV), то активность гена диктуется структурой окружающего хроматина, а не нуклеотидной последовательностью ДНК. Эта система оказалась особенно информативной для выявления факторов, участвующих в эпигенетическом контроле (глава 5). Полагают, что свыше 100 супрессоров мозаичности [ Su(var )] кодируют компоненты гетерохроматина. Без фундамента, созданного этими имеющими важное значение исследованиями, были бы невозможны открытие первых метилтрансфераз лизинов в гистонах (HKMTs) (Rea et al. 2000) и вытекающие из него достижения в области метилирования лизина гистонов. Как нередко случается в биологии, у дробянковых дрожжей и у растений был проведен сравнительный скрининг, выявивший мутанты по сайленсингу, которые оказались функционально консервативными с генами Su(var) у Drosophila .
Читать дальшеИнтервал:
Закладка: