Хаим Шапира - Восемь этюдов о бесконечности. Математическое приключение
- Название:Восемь этюдов о бесконечности. Математическое приключение
- Автор:
- Жанр:
- Издательство:Литагент Аттикус
- Год:2021
- Город:Москва
- ISBN:978-5-389-19538-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Хаим Шапира - Восемь этюдов о бесконечности. Математическое приключение краткое содержание
«Я расскажу читателю-неспециалисту просто и ясно о двух математических теориях, которые считаю самыми завораживающими, – теории чисел и теории множеств, и каждая из них имеет отношение к бесконечности. Вместе с этим я предложу стратегии математического мышления, позволяющие читателю испытать свои способности к решению поистине увлекательных математических задач». (Хаим Шапира)
Восемь этюдов о бесконечности. Математическое приключение - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Кое-кто утверждает, что версия Рассела более замысловата, чем моя, и ее не так легко опровергнуть. Мне не кажется, что сравнивать эти версии честно – Рассел придумал свою, стоя на моих плечах. Когда ребенок стоит на отцовских плечах, он не становится выше отца. Зато мне кажется, что опровергнуть ее не просто нелегко, а невозможно (как, впрочем, и мою).
Вот что говорит Рассел: «Допустим, черепаха начинает забег с некоторого положения, находящегося перед Ахиллесом. В любой момент черепаха оказывается в некой определенной точке, и Ахиллес оказывается в некой определенной точке, причем ни один из них не бывает в одной и той же точке дважды на протяжении всего забега. Черепаха побывает в таком же количестве точек, что и Ахиллес, потому что оба они в каждый конкретный момент находятся в неких конкретных точках, а в другой момент – в других точках. Однако, поскольку черепаха начинает забег с форой, для того, чтобы Ахиллес обогнал черепаху, необходимо выполнение следующего условия: те точки, в которых побывает черепаха, должны составлять лишь часть тех точек, в которых побывает Ахиллес».
А теперь сосредоточьтесь и слушайте внимательно. Версию Рассела можно опровергнуть, только если отказаться от аксиомы, которая утверждает, что часть всегда меньше целого: Ахиллес побывал лишь в некоторых из точек, в которых побывала черепаха. Готовы ли вы отбросить эту аксиому? Рассел отмечает, что всякий, кто верит в ее истинность, должен согласиться, что Ахиллес, даже если он бежит в десять, в тысячу, да хоть бы и в миллион раз быстрее черепахи, никогда ее не догонит, если у черепахи была фора в метр или в сантиметр или в миллиметр.
Что же тут такое происходит? Вы следите за моими рассуждениями? Я могу показать вам, что на пути, который проходят оба бегуна – и черепаха, и Ахиллес, – существует бесконечное множество точек. Может быть, когда мы говорим о бесконечном, привычные нам правила перестают действовать?
Кстати говоря, если вы помните мою первую апорию, все эти рассуждения вообще не имеют смысла. Ахиллес и черепаха не могут даже начать свой забег: движение-то невозможно. Я позволяю вам делать столь странные предположения только из вежливости. Ха! Они даже не смогут уйти со старта! Да и вам не удастся даже выстрелить из стартового пистолета. Чтобы нажать на спусковой крючок, ваш палец должен сначала преодолеть половину расстояния, затем половину оставшегося, затем… ну, вы помните это рассуждение.
Как-то раз я опоздал на встречу со своим великим учителем и наставником Парменидом. Я объяснил ему, что опоздал, потому что по пути к месту нашей встречи в таверне «Елена Прекрасная» мне нужно было преодолеть бесконечное число половинных расстояний. Нас обоих поразил тот факт, что я вообще сумел туда добраться и мы смогли вести эту беседу.
По правде говоря, не знаю, зачем я вообще пытаюсь обосновать перед вами свои рассуждения. Как сказал однажды китайский философ Лао-цзы, «Тот, кто мудр, не спорит; тот, кто спорит, не мудр» [34] «Дао дэ цзин», гл. 81.
. Я мудр, так что пойду-ка я отсюда (если смогу).
Апория № 3. Полет стрелы – покой и движение
В третьей апории Зенон «доказывает», что, поскольку мгновение невозможно разделить на части, стрела, выпущенная из лука, находится в каждое мгновение в состоянии покоя (так как, если бы в любое произвольное мгновение стрела находилась в движении, причиной этого было бы то, что мгновение можно разделить на части).
Если же предположить, что время состоит из мгновений и в любое конкретное мгновение стрела неподвижна, то придется заключить, что стрела никогда не находится в движении и, следовательно, – тут Зенон снова собирается поразить нас своими стрелами, приготовьтесь! – не сможет пролететь никакого расстояния.
Какое бы мгновение мы ни выбрали, стрела находится в нем в покое. Как же из этих состояний покоя может составиться движение? Если в каждое мгновение стрела пролетает расстояние, равное нулю, как же эти нули складываются в положительное число, что «позволяет» стреле лететь?
Всё совсем не просто!
Эта апория до сих пор не имеет решения – то есть такого решения, с которым были бы согласны все члены сообществ физиков и математиков.
Рассмотрим другой вариант этой апории. Представим себе, что по бульвару Ротшильда в Тель-Авиве идет чудо-женщина Галь Гадот. Никого ни в малейшей степени не удивит, если я скажу, что за красавицей следует огромная толпа людей, фотографирующих ее со всех возможных ракурсов. Инстаграм внезапно оказывается полон сотнями ее фотографий, и на каждой из них эта прелестная женщина находится в некотором статическом положении, то есть в состоянии покоя. Такова природа фотографии: она захватывает конкретное мгновение и сохраняет его навечно. Если в кадре что-нибудь движется, лучше поменять старый фотоаппарат на модель поновее или почитать в инструкции, как установить более короткую выдержку. Поскольку Галь можно фотографировать каждое мгновение, из этого следует, что в течение всей своей прогулки по бульвару она остается в состоянии покоя. Приходится спросить: «Если она все время находится в покое, когда же она идет? Как из всех этих состояний покоя получается движение?» То есть мы снова приходим к тому же самому вопросу. И ответ на него снова не вполне ясен.
Занимаемся апориями Зенона
Учительница Зилия. Как вы помните, дети, через любые две точки проходит только одна прямая.
Зенон. Ни через какие две точки не проходит никакая прямая, потому что перемещение из одной точки в другую невозможно. Я уже несколько раз это объяснял. Кроме того, я не понимаю, почему вы отвергаете мое блестящее решение задачи о корабле, отплывающем из Мегары в Афины: несмотря на небольшое расстояние, корабль этот дойдет до места назначения через бесконечное время. То есть не дойдет. Вы просто не способны мыслить вне рамок стандартной учебной программы.
Зилия. Зенон, ты постоянно споришь о самых простых и очевидных вещах и всюду вносишь ненужные усложнения.
Зенон. Не бывает ничего простого и ясного.
Зилия. О чем ты говоришь на этот раз?
Зенон. На прошлом уроке вы учили нас, что прямая состоит из бесконечного множества точек, так?
Зилия. Именно так.
Зенон. А еще вы сказали, что длина точки равна нулю, не правда ли?
Зилия. Разумеется. Потому что, если бы она была какой-нибудь другой, то точку можно было бы разделить на части, что противоречит нашей основополагающей предпосылке. Если бы у точки была длина, она была бы не точкой, а отрезком прямой. Кроме того, у точки не может быть никакой длины, потому что между любыми двумя точками всегда есть еще одна точка – на самом деле даже несколько дополнительных точек. Если бы точка имела длину большую нуля, а расстояние между двумя точками было меньше этой длины, то первую точку было бы невозможно разместить между двумя другими. А это полностью противоречит всей фундаментальной логике геометрии.
Читать дальшеИнтервал:
Закладка: