Хаим Шапира - Восемь этюдов о бесконечности. Математическое приключение

Тут можно читать онлайн Хаим Шапира - Восемь этюдов о бесконечности. Математическое приключение - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент Аттикус, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Восемь этюдов о бесконечности. Математическое приключение
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Аттикус
  • Год:
    2021
  • Город:
    Москва
  • ISBN:
    978-5-389-19538-7
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Хаим Шапира - Восемь этюдов о бесконечности. Математическое приключение краткое содержание

Восемь этюдов о бесконечности. Математическое приключение - описание и краткое содержание, автор Хаим Шапира, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Математические формулы – такое же чудо, как и гениальные произведения великих композиторов и писателей, утверждает автор нескольких бестселлеров, математик и философ Хаим Шапира. Всем, кто желает расширить свой кругозор, он предлагает познакомиться с математическими теориями, касающимися самой красивой из концепций, когда-либо созданных человечеством, – концепцией бесконечности. Эта концепция волновала многих выдающихся мыслителей, среди которых Зенон и Пифагор, Георг Кантор и Бертран Рассел, Софья Ковалевская и Эмми Нётер, аль-Хорезми и Евклид, Софи Жермен и Сриниваса Рамануджан. Поскольку мир бесконечности полон парадоксов, немало их и в этой книге: апории Зенона, гильбертовский отель «Бесконечность», парадокс Ахиллеса и богов, парадокс Рая и Ада, парадокс Росса – Литлвуда о теннисных мячах, парадокс Галилея и многие другие.
«Я расскажу читателю-неспециалисту просто и ясно о двух математических теориях, которые считаю самыми завораживающими, – теории чисел и теории множеств, и каждая из них имеет отношение к бесконечности. Вместе с этим я предложу стратегии математического мышления, позволяющие читателю испытать свои способности к решению поистине увлекательных математических задач». (Хаим Шапира)

Восемь этюдов о бесконечности. Математическое приключение - читать онлайн бесплатно ознакомительный отрывок

Восемь этюдов о бесконечности. Математическое приключение - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Хаим Шапира
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Интереснейший анализ этого парадокса приводится в книге Рэймонда Смаллиана «Алиса в стране смекалки» (1982) [43] Нам известны два перевода этой книги на русский язык: «Алиса в стране смекалки» (Пер. Ю. А. Данилова. М.: Мир, 1987) и «Приключения Алисы в стране головоломок» (Пер. Е. А. Трофимовой. М.: Просвещение, 2008). . Там этот парадокс объясняет Алисе Шалтай-Болтай. Смаллиан приходит к следующему выводу: парадокс брадобрея эквивалентен утверждению «Я знаю человека низкорослого и в то же время высокого».

Вот другой вариант парадокса Рассела. Библиотекарь решает составить два каталога своей библиотеки: один из них желтый и называется «Желтый каталог книг, в которых упоминаются они сами», а второй – «Синий каталог книг, в которых не упоминаются они сами».

Библиотекарь рассматривает одну за другой все книги библиотеки и вносит их названия либо в желтый каталог, либо в синий. Последний получается очень большим, а первый – весьма тонким, поскольку в большинстве книг они сами не упоминаются. Наконец библиотекарь доходит до двух последних книг, которые нужно каталогизировать: это сами желтый и синий каталоги.

Желтый каталог можно внести в него самого (потому что тогда в нем будет упоминаться он сам, так что все будет в порядке). Но что, спрашивается, делать с синим каталогом, в котором должны быть перечислены книги, не содержащие упоминания о самих себе? Если его внести в самого себя, то в синем каталоге будет упоминаться он сам, а следовательно, его там быть не должно. Однако если вписать его в желтый каталог, то в синем каталоге не будет упоминаться он сам… следовательно, его не должно быть в желтом каталоге, который предназначен для книг, содержащих упоминания о самих себе. Мы явно зашли в тупик. Что бы мы ни делали с синим каталогом, мы в любом случае нарушаем правило.

Я не хочу состоять в клубе, в члены которого принимают таких, как я.

Граучо Маркс

Два типа множеств

Вернемся к нашей теме. Есть два типа множеств. Множества первого типа называют обычными множествами: это множества, не содержащие в качестве элемента самих себя. Например, к этому типу относится множество всех кроликов, потому что множество всех кроликов – не кролик и, следовательно, не является элементом самого себя.

А вот множество всех «не-кроликов» – это множество второго типа, к которому относятся множества, содержащие самих себя. Множество «не-кроликов» – тоже не кролик. Аналогичным образом «множество всех объектов, которые можно описать при помощи ровно одиннадцати слов» – тоже множество второго типа. Необычное свойство этих множеств заключается в том, что они сами обладают свойствами, которых требует определение их элементов. Проще говоря, они содержат сами себя в качестве элементов. Представьте себе, например, множество всех идей, которые можно вообразить. Это множество содержит в качестве одного из своих элементов и само себя: очевидно, множество всех идей, которые можно помыслить, – тоже идея. Этот второй тип множеств принято обозначать буквой R, в честь Рассела. Другими словами, любое множество, которое может содержать само себя в качестве элемента, называется сейчас множеством типа R [44] Или расселовским множеством. . Любое множество может быть только обычным или расселовским, что означает, что никакое конкретное множество, предположительно, не может быть в одно и то же время множеством обычным и множеством расселовским.

Но так ли это на самом деле?

Рассмотрим множество всех обычных множеств . Назовем это множество М. И тут нас ожидает сюрприз: множество М – не обычное множество, но и не расселовское. Сейчас объясню.

Если бы М было обычным множеством, тогда его следовало бы включить в качестве элемента в множество обычных множеств, то есть в множество М. Но тогда М будет элементом М, а значит, М не может быть стандартным множеством, потому что оно содержит само себя и, следовательно, относится к расселовским множествам. Мы пришли к противоречию.

Вместе с тем, если М – расселовское множество, значит, оно не принадлежит к «множеству обычных множеств». Но это и есть множество М! Снова получается противоречие.

Как можно видеть из всего этого, исходное «интуитивное» определение множества, которое Кантор сформулировал на естественном языке в так называемой «наивной теории множеств», может приводить к неразрешимым парадоксам. Поэтому теперь используются другие методы определения множеств.

Из всего этого можно сделать следующие выводы:

1. Неограниченное применение интуитивного определения понятия множества может порождать нежелательные парадоксы.

2. Не следует устанавливать такие правила, которые люди не могут выполнять.

3. Множество всех «не-кроликов» слишком велико, чтобы его можно было обсуждать.

ДВА ОТСТУПЛЕНИЯ: СОВСЕМ КОРОТКОЕ И ЧУТЬ ПОДЛИННЕЕ

1. Поскольку я нежно люблю Италию, я никак не могу не упомянуть, что итальянский математик Чезаре Бурали-Форти (1861–1931) открыл нечто похожее на парадокс Рассела еще раньше его, в 1897 г. Он занимался исследованиями теории множеств и изучал концепцию так называемого «множества всех порядковых чисел».

2. Французский философ Жан Буридан также представил – еще в XIV в. – парадокс, очень похожий на парадокс брадобрея по Расселу. В главе VIII книги «Софизмы» (Sophismata), называющейся «Неразрешимое» (Insolubilia), Буридан рассказывает следующую историю:

Платон встречал своих учеников у некоего моста и не позволял никому перейти на другую сторону без его разрешения. Однажды к мосту пришел Сократ, который потребовал, чтобы Платон его пропустил. Платону не понравился тон, которым разговаривал с ним его учитель; он ответил: «Если первое утверждение, которое ты выскажешь, будет истинным, я тебя пропущу; если же первое утверждение, которое ты выскажешь, будет ложным, я брошу тебя в бурную воду». Сократ немного подумал и сказал: «Ты бросишь меня в воду».

Посмотрим, что тут происходит. Если Платон бросит Сократа в воду, значит, Сократ говорил правду и Платону не следовало бросать его в воду – он должен был пропустить Сократа через мост. А если Платон позволит Сократу спокойно перейти мост, значит, Сократ солгал, а следовательно, Платону следовало отправить его на встречу с бурным течением реки.

Вот и все, что я хотел сказать о Буридане.

Кстати говоря, почти точно такой же парадокс встречается в главе LI второго тома «Дон Кихота», где описано губернаторство Санчо Пансы на острове Баратария. Возможно, вы захотите немного отдохнуть от математики и прочитать эту замечательную главу. Вам понравится.

7

Гранд-отель «бесконечность» имени Гильберта

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Хаим Шапира читать все книги автора по порядку

Хаим Шапира - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Восемь этюдов о бесконечности. Математическое приключение отзывы


Отзывы читателей о книге Восемь этюдов о бесконечности. Математическое приключение, автор: Хаим Шапира. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x