Хаим Шапира - Восемь этюдов о бесконечности. Математическое приключение

Тут можно читать онлайн Хаим Шапира - Восемь этюдов о бесконечности. Математическое приключение - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент Аттикус, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Восемь этюдов о бесконечности. Математическое приключение
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Аттикус
  • Год:
    2021
  • Город:
    Москва
  • ISBN:
    978-5-389-19538-7
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Хаим Шапира - Восемь этюдов о бесконечности. Математическое приключение краткое содержание

Восемь этюдов о бесконечности. Математическое приключение - описание и краткое содержание, автор Хаим Шапира, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Математические формулы – такое же чудо, как и гениальные произведения великих композиторов и писателей, утверждает автор нескольких бестселлеров, математик и философ Хаим Шапира. Всем, кто желает расширить свой кругозор, он предлагает познакомиться с математическими теориями, касающимися самой красивой из концепций, когда-либо созданных человечеством, – концепцией бесконечности. Эта концепция волновала многих выдающихся мыслителей, среди которых Зенон и Пифагор, Георг Кантор и Бертран Рассел, Софья Ковалевская и Эмми Нётер, аль-Хорезми и Евклид, Софи Жермен и Сриниваса Рамануджан. Поскольку мир бесконечности полон парадоксов, немало их и в этой книге: апории Зенона, гильбертовский отель «Бесконечность», парадокс Ахиллеса и богов, парадокс Рая и Ада, парадокс Росса – Литлвуда о теннисных мячах, парадокс Галилея и многие другие.
«Я расскажу читателю-неспециалисту просто и ясно о двух математических теориях, которые считаю самыми завораживающими, – теории чисел и теории множеств, и каждая из них имеет отношение к бесконечности. Вместе с этим я предложу стратегии математического мышления, позволяющие читателю испытать свои способности к решению поистине увлекательных математических задач». (Хаим Шапира)

Восемь этюдов о бесконечности. Математическое приключение - читать онлайн бесплатно ознакомительный отрывок

Восемь этюдов о бесконечности. Математическое приключение - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Хаим Шапира
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Омега пришла в такой восторг от предложения изобретательных сестер, что повесила в холле гостиницы следующее объявление:

Пустых номеров нет. Гостиница полностью занята.
Есть свободные номера. У нас всегда найдется место.

Так все и случилось. Когда приехали отрицательные числа, все удалось как нельзя лучше. Их расселили по номерам без каких бы то ни было затруднений, и гостиница стала выглядеть следующим образом:

Сейчас я объясню новое распределение номеров 0 остался в номере 1 в котором - фото 68

Сейчас я объясню новое распределение номеров. 0 остался в номере 1, в котором он и жил до приезда отрицательных чисел. Все остальные положительные целые числа оказались в номерах, соответствующих их удвоенным значениям. Например, число 3 поселилось в номере 6, а число 111 – в номере 222.

Каждому отрицательному числу достался номер, соответствующий значению постояльца, умноженному на (–2) плюс 1. Таким образом, число –1 оказалось в номере 3, а число –17 – в номере (–17) × (–2) + 1 = 35.

Следующая неделя была спокойной и для гостиницы, и для ее постояльцев.

Когда отрицательные числа выехали из гостиницы, 0 решил уехать вместе с ними. После их отъезда Омега, к удивлению своему, обнаружила, что натуральные числа, некогда полностью занимавшие гостиницу, теперь заполняют только половину ее: занятыми остались только четные номера. Собственно говоря, теперь она могла сократить расходы, уволив Сигму, которая отвечала за обслуживание нечетных номеров, оказавшихся теперь совершенно пустыми. Правда, Сигма помогла ей решить проблему с размещением отрицательных чисел, не говоря уже о том, что Омеге казалось неправильным разлучать сестер. Однако факт оставался фактом: так или иначе, хотя в гостинице оставалось точно такое же количество постояльцев, которое раньше занимало ее полностью, ее заполненность упала до 50 процентов!

«Тут происходит что-то странное, – подумала Омега. – Что же случится, – задумалась она, постепенно начиная беспокоиться, – если число 1 переселится в номер 10, число 2 – в номер 20, число 3 – в номер 30 и так далее? Заполненность гостиницы упадет до 10 процентов, хотя из нее не выедет ни один из постоянных жильцов! Все натуральные числа по-прежнему будут на месте, и тем не менее уровень заполненности будет таким низким, что меня, того и гляди, уволят!»

Все еще обдумывая эту ужасную мысль, она вспомнила, что через две недели в гостинице должна пройти важная конференция под названием «Положительная рациональность в эпоху рациональной положительности», и все ее участники – то есть все положительные рациональные числа – должны будут провести в гостинице три положительно рациональных дня.

«Мы без труда найдем место для всех, – сказала себе Омега. – Гостиница стоит полупустой, и в ней имеется бесконечное количество свободных номеров».

Однако спокойствие Омеги было недолгим. Внезапно на нее нахлынули тревожные мысли. Омега осознала, что рациональные числа со знаменателем 2 могут полностью занять гостиницу, если дробь 1/2 поселится в номере 1, дробь 2/2 – в номере 2, дробь 3/2 – в номере 3 и так далее. Но в то же время точно таким же образом могут занять всю гостиницу и рациональные числа со знаменателями, равными 3, 4 или любым другим числам: 1/3 – в номере 1, 2/3 – в номере 2, 3/3 – в номере 3… Другими словами, на конференцию приедет бесконечное количество бесконечных множеств, и любое из них может занять всю гостиницу целиком. Не говоря уже о том, что даже до их прибытия гостиницу уже занимает бесконечное количество натуральных чисел (1, 2, 3, 4…).

Администратор попыталась рассмотреть другие возможные варианты: например поселить 1 в номере 1, 2 – в номере 1001, 3 – в номере 2001…, а затем предоставить числу 1/2 номер 2, числу 2/2 – номер 1002, числу 3/2 – номер 2003 и так далее. Однако она быстро поняла, что и этот план не дает решения проблемы (объясните, почему этот вариант не работает).

Поскольку Омеге было неловко еще раз беспокоить Лямбду и Сигму – в их профессиональные обязанности входила уборка номеров, а не советы по стратегическим вопросам, – она решила (поскольку у нее не было особого выбора) обратиться за помощью к главному математику системы Апейрон (в которой находится планета Проксима-Инфинитас) профессору Финкельштейну-Островскому-Канторовичу.

Пожилой, но энергичный профессор заявил, что проблема только кажется сложной, но на самом деле это не так:

– Благодаря человеку по имени Евклид, который жил когда-то на очень отдаленной маленькой голубой планете под названием Земля, эту задачу можно решить сравнительно легко, – сказал профессор с тройной фамилией.

– Что же сделал этот Евклид? – спросила администратор гостиницы.

– Он доказал, что количество простых чисел бесконечно, – ответил профессор.

– И как это поможет нам найти номера для всех постояльцев? – спросила Омега, явно сомневавшаяся в наличии какой бы то ни было связи между бесконечной природой простых чисел и возможностью организовать размещение всех участников конференции.

– Я объясню как можно проще, – пообещал Финкельштейн-Островский-Канторович. – Тот факт, что простых чисел существует бесконечно много, позволяет нам получить весьма простое решение задачи размещения всех рациональных чисел. Вот план наших действий. Мы будем распределять их по номерам, соответствующим простым числам, возведенным в последовательные степени, а именно:

Первое простое число – 2. Мы поселим число 1 в номере 2, а число 2 – в номере 2², число 3 получит номер 2³, число 4 будет жить в номере 2 4… и так далее. Следующее простое число – 3, – продолжал профессор. – Поэтому дробь 1/2 поселится в номере 3, 2/2 – в номере 3², 3/2 – в номере 3³, 4/2 – в номере 3 4и так далее.

– Но ведь 2/2 равно 1, а число 1 уже живет в номере 1, – задумалась администратор гостиницы.

– В этом нет никакой проблемы, даже наоборот. Числу 1 достанется множество номеров, и оно выберет, в каком из них жить, – ответил профессор.

Теперь мы подходим к третьему простому числу, которое равно 5. Значит, числу 1/3 достанется номер 5. – Именно в этот момент администратор поняла, почему простые числа непременно нужно возводить в степени: дело в том, что номер 4 уже занят числом 2.

– 2/3 поселится в номере 5², – продолжал профессор, – дроби 3/3 будет выделен номер 5³… вы ведь уже поняли логику моего метода. Затем мы переходим к 7, четвертому простому числу. Идея остается той же. 1/4 получает номер 7, 2/4 – номер 7², 3/4 сможет вселиться в номер 7³ и так далее и так далее – снова и снова и снова. Эта схема расселения очень интересна, – добавил профессор. – Хотя имеется бесконечное число бесконечных групп постояльцев, и каждая из этих групп сама по себе способна целиком заполнить гостиницу, мы сумели разместить всех их. Причем… у нас по-прежнему остается бесконечное количество свободных номеров!

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Хаим Шапира читать все книги автора по порядку

Хаим Шапира - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Восемь этюдов о бесконечности. Математическое приключение отзывы


Отзывы читателей о книге Восемь этюдов о бесконечности. Математическое приключение, автор: Хаим Шапира. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x