Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним

Тут можно читать онлайн Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент Corpus, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Эта странная математика. На краю бесконечности и за ним
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Corpus
  • Год:
    2021
  • Город:
    Москва
  • ISBN:
    978-5-17-119879-4
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним краткое содержание

Эта странная математика. На краю бесконечности и за ним - описание и краткое содержание, автор Агниджо Банерджи, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Автор множества научно-популярных книг, астроном и музыкант Дэвид Дарлинг и необычайно одаренный молодой математик Агниджо Банерджи, в тринадцать лет набравший максимально возможное количество баллов в IQ-тесте общества интеллектуалов Менса, представляют свежий взгляд на мир математики. Вместе они бесстрашно берутся объяснить самые странные, экзотичные и удивительные проблемы математики нашего времени. Спектр обсуждаемых тем широк: от высших измерений, хаоса, бесконечности и парадоксов до невообразимо огромных чисел, музыки, сложных игр. А главное – все это оказывается неразрывно связанным с нашей повседневной жизнью. Отличная книга для всех, кто интересуется наукой, ведь математика – «основа окружающего нас физического мира, его невидимая инфраструктура».
В формате PDF A4 сохранен издательский макет.

Эта странная математика. На краю бесконечности и за ним - читать онлайн бесплатно ознакомительный отрывок

Эта странная математика. На краю бесконечности и за ним - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Агниджо Банерджи
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Хотя многие из чисел Мерсенна действительно простые, сам Мерсенн допустил в своих расчетах несколько ошибок. Например, он определил как простое число M 67. Делители этого числа впервые нашел в 1903 году Фрэнк Нельсон Коул. 31 октября математика пригласили сделать часовой доклад в Американском математическом обществе. Во время лекции Коул, не говоря ни слова, подошел к доске и вручную сначала вычислил значение числа 2 67 – 1, а затем перемножил 139 707 721 и 761 838 257 287, продемонстрировав, что результаты совпадают, – и молча же вернулся на свое место под гром аплодисментов. Позже он признался, что на то, чтобы найти делители числа 2 67 – 1, у него ушло “три года воскресений”.

С 1951 года поиск простых чисел ведется исключительно с помощью компьютеров. Появление все более быстрых алгоритмов позволяет математикам вычислять все бо́льшие и бо́льшие простые числа Мерсенна. На момент написания этой книги самое большое известное простое число – M 74207281, имеющее 22 338 618 знаков. Его вычислил 17 сентября 2015 года Кёртис Купер, профессор Университета Центрального Миссури, в рамках проекта GIMPS ( Great Internet Mersenne Prime Search, “Масштабный интернет-проект по поиску простых чисел Мерсенна”) – добровольного совместного проекта распределенных вычислений, участники которого за двадцать с лишним лет его существования уже рассчитали пятнадцать самых больших простых чисел Мерсенна. По сложившейся традиции авторы открытия отметили свой успех, откупорив бутылку шампанского.

Итак, мы знаем, что такое простые числа, и доказали, что их ряд бесконечен. Нам известно, что в современном мире они могут приносить пользу и что они встречаются в природе. Но в области простых чисел еще много белых пятен: например, мы не знаем, верны ли определенные гипотезы. Одна из наиболее известных – проблема Гольдбаха, названная так в честь немецкого математика Христиана Гольдбаха. Гипотеза гласит, что любое четное число, большее двух, можно представить в виде суммы двух простых чисел. Для малых четных чисел это утверждение легко проверить: 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7 и так далее. С помощью компьютеров были проверены и гораздо большие числа – правило не подвело ни разу. Однако до сих пор неизвестно, верна ли гипотеза Гольдбаха во всех случаях.

Другая недоказанная гипотеза касается пар простых чисел, отличающихся на 2: таких как 3 и 5 или 11 и 13, – их еще называют числами-близнецами. Гипотеза о числах-близнецах гласит, что таких пар – бесконечное множество, однако доказать истинность этого утверждения пока никому не удалось.

Пожалуй, самая большая загадка простых чисел связана с их распределением. Среди малых натуральных чисел простые встречаются очень часто, но с ростом значений – все реже и реже. Математиков интересует, с какой скоростью убывает плотность простых чисел и как много мы вообще способны узнать об их частоте в числовом ряду. Какой-то строгой закономерности в их появлении не наблюдается, но это вовсе не значит, что они выскакивают где попало. В своей книге “Рекорды простых чисел” ( The Book of Prime Number Records ) Пауло Рибенбойм формулирует это таким образом:

Можно с довольно хорошей точностью предсказать количество простых чисел, меньших N (особенно при больши́х значениях N ); с другой стороны, в распределении простых чисел в коротких интервалах наблюдается некая заложенная случайность. Это сочетание “случайности” и “предсказуемости” приводит к тому, что распределению простых чисел свойственны одновременно и упорядоченность, и элемент неожиданности.

Загадка простых чисел волнует многие поколения математиков. А ведь кажется, куда проще – даже дети в начальной школе могут объяснить, что такое простые числа, назвать несколько первых из них и определить, простое число или нет. Вот и Агниджо заинтересовался простыми числами в очень раннем возрасте, а заодно и кое-какими из нерешенных проблем вокруг них. А со временем этот интерес привел к увлечению другими великими тайнами теории чисел.

Простые числа – это еще и своего рода атомы числовой вселенной, из которых строятся все остальные натуральные числа. Казалось бы, есть все основания надеяться, что они будут подчиняться строгим законам – и предсказывать, где именно в числовом ряду появится следующее, не будет составлять никакого труда. Но нет, эти математические кирпичики поразительно непослушны и капризны. Именно это противоречие между ожиданием и реальностью, стойкое ощущение, что некие организующие принципы чрезвычайной важности находятся за пределами нашего разумения, не давало покоя математикам с античных времен.

И действительно, если рассматривать простые числа по одному или маленькими группами, создается ощущение, что закон им не писан. Но если взглянуть на все их множество, в нем, словно в гигантском косяке рыб или стае скворцов, начинает проявляться невидимый вблизи уровень организации. Одно из самых любопытных открытий в области простых чисел было сделано случайно, и мы уже упоминали о нем в предисловии. Произошло это в 1963 году. Заскучав на какой-то лекции, польский математик Станислав Улам начал рисовать на листке бумаги. Он записывал числа в клетки по квадратной спирали, поставив в центре единицу, виток за витком. Затем он обвел кружками все простые числа и обратил внимание на одну странность: по некоторым из диагоналей спирали, а также по нескольким горизонтальным и вертикальным линиям простые числа выстроились необычно густо. Спирали большего размера, построенные с помощью компьютеров и содержащие десятки тысяч чисел, демонстрируют ту же удивительную закономерность. Насколько можно судить, она сохраняется и дальше, какую бы огромную спираль нам ни вздумалось построить.

Часть из таких “плотных” линий спирали соответствует определенным формулам в алгебре, которые, как мы знаем, дают высокий процент простых чисел. Самая известная из них найдена Леонардом Эйлером и названа в его честь. Многочлен Эйлера n 2 + n + 41 выдает простые числа для всех значений n от 0 до 39. Например, при n = 0, 1, 2, 3, 4 и 5 получаем соответственно 41, 43, 47, 53, 61 и 71. При n = 40 формула дает (не простое) число 41 2, но при более высоких значениях n продолжает и дальше с завидной частотой выдавать простые числа. Есть и другие похожие формулы, обладающие этим не совсем понятным свойством порождать большое количество простых чисел. Математики продолжают дискутировать по поводу значения закономерностей в спирали Улама и их связи с нерешенными задачами, такими как проблема Гольдбаха, гипотеза о числах-близнецах и гипотеза Лежандра (согласно которой между квадратами двух последовательных натуральных чисел всегда есть простое число). Бесспорно одно: спираль Улама наглядно демонстрирует, что закономерность существует и что, несмотря на кажущуюся беспорядочность распределения простых чисел, они следуют каким-то общим правилам, регулирующим их появление в больших группах.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Агниджо Банерджи читать все книги автора по порядку

Агниджо Банерджи - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Эта странная математика. На краю бесконечности и за ним отзывы


Отзывы читателей о книге Эта странная математика. На краю бесконечности и за ним, автор: Агниджо Банерджи. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x