Хорди Деулофеу - Дилемма заключенного и доминантные стратегии. Теория игр
- Название:Дилемма заключенного и доминантные стратегии. Теория игр
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2014
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Хорди Деулофеу - Дилемма заключенного и доминантные стратегии. Теория игр краткое содержание
Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.
Дилемма заключенного и доминантные стратегии. Теория игр - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Однако более подробный анализ игры показывает, что в этом случае каждый из двух игроков ожидает выиграть больше, и при этом выигрыш другого игрока останется прежним. Поэтому предыдущее решение не является оптимальным, и цена игры, найденная для оптимальных смешанных стратегий, используемых в играх с нулевой суммой, не всегда является наибольшей.
Это происходит потому, что оптимальные стратегии в играх с нулевой суммой основаны на ограничении или уменьшении выигрыша соперника. Если игра имеет нулевую сумму, то уменьшение выигрыша одного игрока равносильно увеличению выигрыша другого, но в нашем случае это не так. Допустим, что компания Б не будет использовать смешанную стратегию и всегда будет применять стратегию 2 (выпуск рекламы вечером), в то время как компания Б будет придерживаться смешанной стратегии. В этом случае компания А в среднем получит 30 • 2/5 + 18 • 3/5 = 22,8, а компания Б — по-прежнему 19,2. Заметим, что выигрыш Б не изменился, а выигрыш А возрос. В играх с нулевой суммой это невозможно. Очевидно, компания Б может действовать подобным образом и всегда использовать чистую стратегию 2, ожидая, что А будет придерживаться смешанной стратегии. В этом случае результат Б возрастет, результат А останется на прежнем уровне.
Но что произойдет, если обе компании используют чистую стратегию 2? Обе получат лишь по 18% аудитории, выигрыш обоих игроков уменьшится одинаково. Кажется, что мы зашли в тупик: каждая компания может выиграть больше, не повредив конкуренту, но если оба игрока захотят получить больше, то, напротив, выиграют меньше среднего ожидаемого значения.
Однако возможен и другой вариант. Допустим, что оба игрока заключили соглашение, чтобы не попасть одновременно в клетки с наименьшим выигрышем, то есть не размещать рекламу в одно и то же время. В этом случае каждая компания получит больше, при этом выигрыши компаний могут стать равными: если компания А будет чередовать стратегии 1 и 2, а компания Б — чередовать стратегии 2 и 1, то средний выигрыш для обеих компаний будет равен 25% за партию. Компания А будет попеременно получать 20 и 30 процентов, компания Б — 30 и 20. Это решение кажется оптимальным и, более того, является равновесным.
Разумная мысль: равновесие Нэша
Фон Нейман и Моргенштерн, изучив игры с нулевой суммой для двух лиц, перешли к анализу игр с большим числом игроков, учитывая возможные альянсы (группы из двух игроков и более, которые действуют согласованно), то есть отошли от чисто конкурентных игр. В 50-е годы XX века именно Джон Нэш расширил теорию игр, включив в нее некооперативные игры для n игроков, где альянсы были запрещены. Нэш уделял особое внимание играм с ненулевой суммой для двух и более игроков и пришел к мысли о равновесии, которое теперь известно как равновесие Нэша.
Алгоритм Нэша (или по меньшей мере его суть) кажется простым. Допустим, что разные игроки проанализировали игру и каждый выбрал определенную стратегию. Зная результат игры, зададим каждому игроку вопрос: считает ли он результат удовлетворительным? Иначе говоря, предпочел бы он действовать иначе? Если ответ положителен, то есть все участники считают, что грамотно выбрали стратегию, то, согласно Нэшу, в игре достигнуто равновесие.
Рассмотрим применение этой идеи в конкретном случае. В следующей матрице приведены результаты игры с ненулевой суммой:
Оба игрока выбрали стратегию 2. Узнав результат, они остались довольны выбором и сочли, что сделали все возможное. Первый игрок (его стратегии указаны в строках) считает, что его выигрыш, 5, был максимально возможным. Второй игрок, узнав, что первый выбрал стратегию 2, также посчитал свой выбор оптимальным: он выиграл 2, а мог не выиграть ничего.
Эту ситуацию можно оспорить, сказав, что первый игрок сделал «правильный» выбор, потому что выбранная им стратегия (2) является доминантной, а второй игрок может решить, что стоило выбирать первую стратегию, так как в этом случае он мог выиграть 100. Однако в конкурентной игре, где каждый игрок хочет увеличить свой выигрыш, подобная ситуация невозможна, если игрок 1 будет действовать рационально.
Следовательно, из четырех возможных результатов единственным, который не вызовет неприятия игроков, является (5, 2). Этот результат и является точкой равновесия Нэша . В партии с любым другим исходом один из игроков мог бы усомниться в правильности выбора. В этом случае в терминологии Нэша решение было бы нестабильным.
Примененный нами алгоритм интересен и дает рациональное решение. В этом контексте Нэш доказал, что любая конечная игра для двух лиц имеет минимум одну точку равновесия, и расширил таким образом теорему фон Неймана о минимаксе. В играх с нулевой суммой точка равновесия совпадает с точкой, найденной по теореме о минимаксе. Однако результат Нэша интересен тем, что позволяет найти точки равновесия в играх с ненулевой суммой, как мы увидели из прошлого примера. При этом найденное решение будет обоснованным.
Однако так происходит не всегда, и порой точка равновесия выглядит непривычно и имеет необычные свойства.
Возможно, труды Нэша, особенно его первые работы, являются важнейшими после работ фон Неймана за всю короткую историю теории игр. Уже в детстве Нэш продемонстрировал выдающийся интеллект и в то же время обнаружил трудности в общении с другими людьми. Он начал изучать химию, но вскоре переключился на математику, где отличался особым талантом. В 1948 году он получил стипендию Принстонского университета, где в то время работали Эйнштейн и фон Нейман, для написания докторской диссертации по теории игр под руководством Альберта Такера. В 1950 году он представил свою диссертацию — краткую и оригинальную работу о некооперативных играх. Его труд быстро нашел широкое признание среди специалистов по теории игр. Нэш придумал настольную игру на поле с шестиугольными клетками, позднее получившую название «Геке». По-видимому, Нэш не знал, что несколькими годами ранее такую же игру придумал Пит Хейн. Нэш доказал, что в этой игре должна существовать выигрышная стратегия для первого игрока.
Начиная с 1950-х годов он работал в Массачусетском технологическом институте (MIT) и в корпорации RAND — знаменитой организации ВВС США, занимавшейся стратегическими исследованиями. Спустя некоторое время после свадьбы, в 1959 году, ему пришлось пройти курс лечения от шизофрении. Впоследствии болезнь усилилась и преследовала ученого в разные годы жизни. Несмотря на болезнь, он продолжал работать и в 1994 году получил Нобелевскую премию по экономике.
Читать дальшеИнтервал:
Закладка: