Бенуа Мандельброт - Фрактальная геометрия природы
- Название:Фрактальная геометрия природы
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2002
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Распространено мнение, что минималисты обязаны обходиться ограниченным набором стандартных геометрических форм: прямых, окружностей, спиралей и так далее. Однако это не совсем так. Используемые в теоретических моделях фракталы также имеют весьма простую форму (вследствие того, что теоретическая наука поощряет простоту форм). И я вполне могу согласиться с тем, что многие из фракталов можно рассматривать как новую форму минималистского геометрического искусства.
Не напоминают ли вам некоторые его образцы творения М.К.Эшера? Если да, то в этом нет ничего удивительного, так как Эшер весьма разумно подошел к выбору источника вдохновения — этим источником стали гиперболические черепичные покрытия из книги Фрикке и Клейна [154], которые (см. главу 18) очень близки к формам, характерным для царства фракталов.
Фрактальное «новое геометрическое искусство» демонстрирует поразительное родство с картинами старых мастеров или творениями «изящной» архитектуры. Одна из очевидных причин заключается в том, что и фракталы, и произведения классических визуальных жанров искусства включают в себя многие масштабы длины и элементы самоподобия (см. [399]). Вполне возможно, что именно по этим причинам, а также потому, что фрактальное искусство возникло из попыток постичь законы Природы, имитируя ее, мы и принимаем его с такой готовностью — оно нам не чуждо. К абстрактной живописи у нас двойственное отношение: те, например, картины, которые мне нравятся, близки к фрактальному геометрическому искусству, остальные же больше тяготеют к стандартной геометрии, что лично мне не доставляет никакого эстетического удовольствия.
Здесь возникает парадоксальная ситуация: если верить Дайсону (см. главу 1), может показаться, что современные математика, музыка, живопись и архитектура каким-то образом связаны между собой. Однако реальных оснований для такого вывода нет, особенно в отношении архитектуры: например, какой-нибудь шедевр Миса ван дер Роэ являет собой откровенный возврат к немасштабируемой евклидовой геометрии, в то время как любое строение эпохи расцвета изящных искусств просто изобилует фрактальными элементами.
СООБРАЖЕНИЯ УДОБСТВА
Главы расположены в порядке возрастания сложности обсуждаемых в них предметов; сделано это для облегчения восприятия основных концепций, вводимых постепенно, по мере возникновения необходимости. То, что такой подход вообще оказывается возможным, является немалым плюсом для теории фракталов. Текст изобилует повторениями, так что читатель едва ли сможет потерять основную нить рассуждения, даже пропустив несколько абзацев, которые покажутся ему слишком скучными или слишком сложными (особенно те, что содержат формулы, выходящие за пределы элементарной математики). Большое количество важных сведений можно почерпнуть из пояснений к иллюстрациям.
Как уже упоминалось, иллюстрации помещены после тех глав, в которых впервые рассматриваются соответствующие феномены. Кроме того, автор довольно часто испытывает необходимость побеседовать частным порядком с той, скажем так, категорией читателей, которая может испытать крайний дискомфорт, если какое-либо место в книге останется нерассмотренным или необъясненным. Такие отступления вставлены прямо в основной текст и снабжены лично мною изобретенными скобками < и ► — для того, чтобы остальные могли их легко заметить и пропустить. Есть и другие отступления, посвященные не настолько существенным замечаниям, чтобы развивать их здесь в полном объеме. В целом же в этом эссе гораздо меньше отступлений, чем во «Фракталах» 1977 г.
Кроме того, теперь, как мне кажется, можно с одного взгляда на текст определить, идет речь о теоретической размерности D или же об экспериментальной. Значение последней, как правило, известно лишь с точностью до одного или двух десятичных знаков и записывается поэтому как 1, 2 или 1, 37. Значение теоретической размерности записывается в виде целых чисел, отношений целых чисел, отношений логарифмов целых чисел или в десятичной форме, по меньшей мере, с четырьмя знаками после запятой.
И СНОВА ГЛАВНАЯ ТЕМА
Отрекшись от всевозможных побочных для настоящего эссе целей, хочу напомнить, о чем я говорил в первой главе. Эта книга представляет собой одновременно и манифест, и собрание прецедентов; за редкими исключениями она составлена из тех теоретических предположений, которые я в свое время высказывал и которые часто приводили к извлечению из праха всевозможных древних идей и их пересмотру с современной точки зрения.
Ни одна из этих теорий не остановилась в своем развитии, а некоторые все еще не вышли из зародышевой стадии. Для одних теорий эта книга — первый выход в свет, другие уже описаны в моих более ранних работах. Кроме моих собственных теорий, в книге упоминаются всевозможные сторонние разработки, инспирированные моими предыдущими исследованиями и давшие мне стимул продолжать работу. Я, однако, далек от мысли попытаться составить полный список областей человеческой деятельности, в которых оказались полезными фракталы — мне не хочется разрушать стиль этого эссе в его теперешнем виде и терять дух манифеста.
И последнее напоминание: в мою задачу не входило проводить подробное исследование каждого прецедента (безусловно, желательное для специалистов). Однако многие темы упоминаются неоднократно. Да, вот еще что: не забывайте о предметном указателе.
II ТРИ КЛАССИЧЕСКИХ ФРАКТАЛА - СОВЕРШЕННО РУЧНЫЕ
5 КАКОВА ПРОТЯЖЕННОСТЬ ПОБЕРЕЖЬЯ БРИТАНИИ?
Прежде чем познакомиться с первым видом фракталов — а именно, с кривыми, фрактальная размерность которых превышает 1, — рассмотрим типичный участок какого-нибудь берега. Очевидно, что его длина не может быть меньше расстояния по прямой между его начальной и конечной точками. Однако, как правило, береговые линии имеют неправильную форму — они извилисты и изломаны, и их длины, вне всякого сомнения, значительно превышают расстояния между их крайними точками, измеренные по прямой.
Известно много способов оценить длину береговой линии более точно, и в этой главе мы проанализируем некоторые из них. В конце концов мы придем к очень примечательному выводу: длина береговой линии — понятие весьма скользкое, и голыми руками его не ухватишь. Какой бы метод измерения мы ни применяли, результат всегда одинаков: длина типичного побережья очень велика и настолько нечетко определена, что удобнее всего считать ее бесконечной. Следовательно, если кому-нибудь вздумается сравнить различные берега с точки зрения их протяженности, ему придется подыскать что-нибудь взамен понятия длины, которое к данному случаю неприменимо.
Читать дальшеИнтервал:
Закладка: