Бенуа Мандельброт - Фрактальная геометрия природы
- Название:Фрактальная геометрия природы
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2002
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
С другой стороны, мне трудно представить, что все заинтересованные правительственные учреждения пусть даже какой-либо одной страны договорятся между собой об использовании единого значения ε , а уж принятие его всеми странами мира совершенно невозможно вообразить. Ричардсон [494] приводит такой пример: в испанских и португальских энциклопедиях приводится различная длина сухопутной границы между этими странами, причем разница составляет 20% (так же обстоит дело с границей между Бельгией и Нидерландами). Это несоответствие, должно быть, частично объясняется различным выбором ε . Эмпирические данные, которые мы вскоре обсудим, показывают, что для возникновения такой разницы достаточно, чтобы одно значение ε отличалось от другого всего лишь в два раза; кроме того, нет ничего удивительного в том, что маленькая страна (Португалия) измеряет длину своих границ более тщательно, чем ее большой сосед.
Второй и более значительный довод против выбора произвольного ε носит философский и общенаучный характер. Природа существует независимо от человека, и всякий, кто приписывает слишком большую важность какому-либо конкретному значению ε или L(ε) , предполагает, что определяющим звеном в процессе постижения Природы является человек со своими общепринятыми мерками или весьма переменчивыми техническими средствами. Если береговым линиям суждено когда-нибудь стать объектами научного исследования, вряд ли нам удастся законодательным порядком запретить неопределенность, наблюдаемую в отношении их длин. Как бы то ни было, концепция географической длины вовсе не столь безобидна, как представляется на первый взгляд. Она не является до конца «объективной», так как при определении длины таким образом неизбежно влияние наблюдателя.
ПРИЗНАНИЕ И ЗНАЧЕНИЕ ПРОИЗВОЛЬНОСТИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ
Несомненно, многие придерживаются мнения, что береговые линии представляют собой неспрямляемые кривые, и я, если уж на то пошло, не могу припомнить, чтобы кто-нибудь считал иначе. Однако мои поиски письменных свидетельств в пользу этого мнения потерпели почти полный провал. Помимо цитат из Перрена, приведенных во второй главе, имеется еще вот такое наблюдение в статье Штейнгауза [539]: «Измеряя длину левого берега Вислы с возрастающей точностью, можно получить значения в десятки, сотни и даже тысячи раз большие, чем то, что дает школьная карта... Весьма близким к реальности представляется следующее заявление: большинство встречающихся в природе дуг не являются спрямляемыми. Это заявление противоречит распространенному мнению, сводящемуся к тому, что неспрямляемые дуги — математическая фикция, а в природе все дуги спрямляемы. Из этих двух противоречивых заявлений верным, по всей видимости, следует считать все же первое». Однако ни Перрен, ни Штейнгауз так и не удосужились разработать свои догадки подробнее и довести их до логического конца.
К. Фадиман рассказывает одну занятную историю. Его друг Эдвард Каснер несколько раз проводил такой эксперимент: он «спрашивал у маленьких детей, какова, по их мнению, общая длина побережья Соединенных Штатов. После того, как кто-то из детей высказывал достаточно «разумное» предположение,... Каснер... предлагал им подумать о том, насколько можно увеличить эту цифру, если очень тщательно измерить периметр всех мысов и бухт, затем так же тщательно проследить меньшие мыски и бухточки в каждом из этих мысов и в каждой из этих бухт, затем измерить каждый камешек и каждую песчинку из тех, что образуют береговую линию, каждую молекулу, каждый атом и т. д. Получалось, что берег может быть каким угодно длинным. Дети понимали это сразу, а вот со взрослыми у Каснера возникали проблемы.» История, конечно, очень мила, однако вряд ли она имеет отношение к моим поискам. Каснер явно не ставил перед собой цель выделить некий аспект реальности, достойный дальнейшего изучения.
Таким образом, можно сказать, что статья [356] и книга, которую вы держите в руках, представляют собой по существу первые работы, посвященные этой теме.
В своей книге «Воля верить»1 Уильям Джеймс пишет: «То, что не укладывается в рамки классификаций... всегда являет собой тучную ниву для великих открытий. В любой науке вокруг общепризнанных и упорядоченных фактов вечно кружит пыльное облако исключений из правил — явлений малозаметных, непостоянных, редко встречающихся, явлений, которые проще игнорировать, нежели рассматривать. Всякая наука стремится к идеальному состоянию замкнутой и строгой системы истин... Феномены, не подлежащие классификации в рамках системы, считаются парадоксальными нелепостями и заведомо не истинны. Ими пренебрегают и их отвергают, исходя из лучших побуждений научной совести... Тот, кто всерьез займется иррегулярными феноменами, окажется способен создать новую науку на фундаменте старой. По завершении же этого процесса правилами обновленной науки по большей части станут вчерашние исключения».
Настоящее эссе, скромной целью которого является полное обновление геометрии Природы, описывает феномены, настолько не вписывающиеся в классификацию, что говорить о них можно лишь с позволения цензуры. С первым из таких феноменов вы встретитесь уже в следующем разделе.
ЭФФЕКТ РИЧАРДСОНА
Эмпирическое исследование изменения приблизительной длины L(ε) , получаемой с помощью Метода А, описано в статье Ричардсона [494], ссылка на которую по счастливой (или роковой) случайности попала мне на глаза. Я обратил на нее внимание только потому, что я был наслышан о Льюисе Фрае Ричардсоне как о выдающемся ученом, оригинальность мышления которого была сродни эксцентричности (см. главу 40). Как мы увидим в главе 10, человечество обязано ему некоторыми наиболее глубокими и долговечными идеями относительно природы турбулентности — особого внимания среди них заслуживает та, согласно которой турбулентность предполагает возникновение самоподобного каскада. Он также занимался и другими сложными проблемами — такими, например, как природа вооруженного конфликта между государствами. Его опыты являли собой образец классической простоты, однако он, если возникала такая необходимость, не колеблясь пользовался и более утонченными концепциями.
Приведенные на рис. 57 графики, обнаруженные уже после смерти Ричардсона среди его бумаг, были опубликованы в чуть ли не секретном (и совершенно не подходящем для таких публикаций) «Ежегоднике по общим системам». Рассмотрев эти графики, мы приходим к заключению, что существуют две постоянные (назовем их λ и D ) — такие, что для определения длины береговой линии посредством построения приближенной к ней ломаной необходимо взять примерно Fε −D интервалов длины ε и записать следующую формулу:
Читать дальшеИнтервал:
Закладка: