Бенуа Мандельброт - Фрактальная геометрия природы
- Название:Фрактальная геометрия природы
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2002
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В сущности, мы предполагаем, что некоторый участок береговой линии, изображенный в масштабе 1/1 000 000, выглядит как прямой отрезок единичной длины; назовем такой участок инициатором. Затем мы предполагаем, что на карте масштаба 3/1000 000 становится видимой некая деталь, а именно, — выступ в форме равностороннего треугольника, занимающий среднюю треть исходного отрезка. Полученное таким образом второе приближение — ломаную, составленную из четырех отрезков равной длины — назовем генератором. Предположим далее, что еще более подробная карта (масштаба 9/1000 000) выглядит как результат замены каждого из четырех отрезков генератора уменьшенной в три раза копией этого самого генератора, т. е. из каждого выступа вырастает по два новых выступа той же формы, но меньшего размера.
Продолжая в том же духе, мы заменяем все прямолинейные отрезки ломаными линиями, и первоначально прямой инициатор постепенно превращается во все более длинную ломаную кривую. Поскольку мы будем иметь дело с такими кривыми на всем протяжении этого эссе, предлагаю ввести для их обозначения новый термин терагоны (от греч. «чудовище, странное создание» и «угол»). Кстати, префикс тера обозначает (очень уместно, надо сказать) в метрической системе умножение на 10 12 .
Если продолжить вышеописанный каскадный процесс до бесконечности, то наши терагоны устремятся к пределу, рассмотренному впервые фон Кохом [574] (см. рис. 74). Назовем такую кривую троичной кривой Коха и обозначим символом K .
На рис. 71 хорошо видно, что площадь этой кривой обращается в нуль. С другой стороны, с каждой ступенью построения ее общая длина увеличивается в 4/3 раза, следовательно, в пределе длина кривой Коха бесконечна. Более того, кривая Коха непрерывна, но нигде не имеет касательной — точно график непрерывной функции, не имеющей производной.
В качестве модели береговой линии кривая K , представляет собой лишь очень отдаленное приближение, но не потому, что она слишком неправильна — скорее потому, что по сравнению с неправильностью типичной береговой линии неправильность кривой Коха уж очень предсказуема. В главах 24 и 28 мы попробуем добиться лучшего соответствия с помощью некоторой рандомизации процесса построения.
КРИВАЯ КОХА В РОЛИ ЧУДОВИЩА
У человека, прочитавшего предыдущий раздел, может сложиться впечатление, что кривая Коха относится к числу наиболее очевидных и интуитивно понятных геометрических фигур. Однако вовсе не так очевидны причины, толкнувшие фон Коха на ее построение. И уж совершенно загадочным представляется отношение к ней со стороны математиков. Чуть ли не единодушно они провозгласили кривую K чудовищной! За подробностями обратимся к работе Хана «Кризис здравого смысла» [190], которая, кстати, еще неоднократно нам пригодится. Хан пишет: «Характер [неспрямляемой кривой или кривой, к которой невозможно провести касательную] совершенно не укладывается в рамки того, что мы можем понять интуитивно. В самом деле, всего лишь после нескольких повторений простой операции сегментирования образующаяся фигура становится настолько сложной, что с трудом поддается непосредственному восприятию, а уж то, к чему эта кривая стремится в пределе, и вовсе невозможно себе представить. Только с помощью разума, применяя логический анализ, мы можем до конца проследить эволюцию этого странного объекта. Если бы мы положились в данном случае на здравый смысл, то составленное нами представление оказалось бы в корне ошибочным, поскольку здравый смысл неизбежно привел бы нас к заключению, что кривых, не имеющих касательной ни в одной своей точке, попросту не бывает. Этот первый пример неадекватности интуитивного подхода затрагивает самые фундаментальные концепции дифференцирования».
Надо отдать Хану должное — в своих высказываниях он не доходит до знаменитого восклицания Шарля Эрмита относительно недифферен- цируемых функций. В письме к Стилтьесу, датированном 20 мая 1893 года, Эрмит пишет об ужасе и отвращении, которые вызывает у него «это наказание Господне, эти жалкие функции без производных» ([211], II, с. 318). Конечно же, каждому из нас хочется верить в то, что великие лишены недостатков и что Эрмит просто шутил, однако из написанной в 1922 году «Заметки» Лебега ([295], I), можно заключить, что это не совсем так. Написав статью о поверхностях, к которым нельзя построить касательные плоскости (об «абсолютно измятых носовых платках»), Лебег представил ее Академии наук для публикации, однако «Эрмит сначала воспротивился включению статьи в «Comptes Rendus»1; примерно к этому времени относится его письмо Стилтьесу... »
Мы с вами уже знаем, что Перрен и Штейнгауз страха перед чудовищами не испытывали, однако единственным математиком, который возражал против общего мнения, основываясь именно на интуитивных соображениях (Штейнгауз возражал, опираясь на факты), был Поль Ле-ви [311]: «[Мне] всегда было удивительно слышать, что если руководствоваться в геометрии здравым смыслом, то непременно приходишь к выводу, что все непрерывные функции дифференцируемы. Насколько я могу судить по собственному опыту, начиная с моей первой встречи с концепцией производной и по сей день, верно как раз обратное».
Как ни печально, эти голоса остались неуслышанными. Почти все книги и абсолютно все музеи науки продолжают уверять нас в том, что недифференцируемые функции противны здравому смыслу, «чудовищны», «патологичны» или даже «психопатичны».
ПРИРУЧЕНИЕ КРИВОЙ КОХА. РАЗМЕРНОСТЬ D= ln4 / ln3 ≈1,2618
Я утверждаю, что кривая Коха является грубой, но математически строгой моделью береговой линии. В качестве первой количественной проверки рассмотрим длину L(ε) троичного терагона Коха, длина сторон которого равна ε . На этот раз длину кривой можно измерить точно, получив при этом чрезвычайно удовлетворительный результат:
L(ε)=ε 1−D .
Эта точная формула оказывается идентичной эмпирическому закону Ричардсона о длине побережья Британии. Для троичной кривой Коха имеем
D= ln4 / ln3 ≈1,2618 ,
откуда следует, что значение D находится внутри интервала значений, полученных Ричардсоном!
< Доказательство:Очевидно, что L(1)=1 , а
L(ε/3)=(4/3)L(ε) .
Это уравнение имеет решение вида L(ε)=ε 1−D если D удовлетворяет соотношению 3 D−1 =4/3 .
Следовательно, D= ln4 / ln3, что и следовало доказать. ►
Разумеется, в случае кривой Коха показатель D представляет собой не эмпирическую, а математическую постоянную. Таким образом, аргументы в пользу того, чтобы считать этот показатель размерностью, становятся еще более убедительными, чем в случае береговых линий.
Читать дальшеИнтервал:
Закладка: